Do you want to publish a course? Click here

Surface rotation and photometric activity for Kepler targets I. M and K main-sequence stars

304   0   0.0 ( 0 )
 Added by \\^Angela Santos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in order to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60 per cent of the sample, including 4,431 targets for which McQuillan et al. (2013a,2014) did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al. (2013a,2014), our rotation periods agree within 99 per cent. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al. (2013a,2014), we find a bimodal distribution of rotation periods.

rate research

Read More

We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 stars, we compute absolute luminosities, linear radii, and effective temperatures (Teff). We develop empirical relations for simK0 to M4 main- sequence stars between the stellar Teff, radius, and luminosity to broad-band color indices and metallicity. These relations are valid for metallicities between [Fe/H] = -0.5 and +0.1 dex, and are accurate to ~2%, ~5%, and ~4% for Teff, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity dependent transformations to convert colors into stellar Teffs, radii, and luminosities. We find no sensitivity to metallicity on relations between global stellar properties, e.g., Teff-radius and Teff-luminosity. Robust examinations of single star Teffs and radii compared to evolutionary model predictions on the luminosity-Teff and luminosity-radius planes reveals that models overestimate the Teffs of stars with Teff < 5000 K by ~3%, and underestimate the radii of stars with radii < 0.7 Rodot by ~5%. These conclusions additionally suggest that the models overestimate the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for single stars to those of eclipsing binaries, we find that single and binary star radii are consistent. However, the literature Teffs for binary stars are systematically lower compared to Teffs of single stars by ~ 200 to 300 K. Lastly, we present a empirically determined HR diagram for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system. [abridged]
Context. Main sequence stars with a convective core are predicted to stochastically excite Internal Gravity Waves (IGWs), which effectively transport angular momentum throughout the stellar interior and explain the observed near-uniform interior rotation rates of intermediate-mass stars. However, there are few detections of IGWs, and fewer still made using photometry, with more detections needed to constrain numerical simulations. Aims. We aim to formalise the detection and characterisation of IGWs in photometric observations of stars born with convective cores (M > 1.5 M$_{odot}$) and parameterise the low-frequency power excess caused by IGWs. Methods. Using the most recent CoRoT light curves for a sample of O, B, A and F stars, we parameterise the morphology of the flux contribution of IGWs in Fourier space using an MCMC numerical scheme within a Bayesian framework. We compare this to predictions from IGW numerical simulations and investigate how the observed morphology changes as a function of stellar parameters. Results. We demonstrate that a common morphology for the low-frequency power excess is observed in early-type stars observed by CoRoT. Our study shows that a background frequency-dependent source of astrophysical signal is common, which we interpret as IGWs. We provide constraints on the amplitudes of IGWs and the shape of their detected frequency spectrum across a range of mass, which is the first ensemble study of stochastic variability in such a diverse sample of stars. Conclusions. The evidence of a low-frequency power excess across a wide mass range supports the interpretation of IGWs in photometry of O, B, A and F stars. We also discuss the prospects of observing hundreds of massive stars with the Transiting Exoplanet Survey Satellite (TESS) in the near future.
The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R$^{+}_{rm{HK}}$ in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R$^{+}_{rm{HK}}$ values are derived from the respective S-indices and related to the rotation periods in various $B-V$-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R$^{+}_{rm{HK}}$ approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R$^{+}_{rm{HK}}$, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used.
Using asteroseismic data and stellar evolution models we make the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence life time is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.
Aims: We aim to measure the starspot rotation periods of active stars in the Kepler field as a function of spectral type and to extend reliable rotation measurements from F-, G-, and K-type to M-type stars. Methods: Using the Lomb-Scargle periodogram we searched more than 150 000 stellar light curves for periodic brightness variations. We analyzed periods between 1 and 30 days in eight consecutive Kepler quarters, where 30 days is an estimated maximum for the validity of the PDC_MAP data correction pipeline. We selected stable rotation periods, i.e., periods that do not vary from the median by more than one day in at least six of the eight quarters. We averaged the periods for each stellar spectral class according to B - V color and compared the results to archival vsini data, using stellar radii estimates from the Kepler Input Catalog. Results: We report on the stable starspot rotation periods of 12 151 Kepler stars. We find good agreement between starspot velocities and vsini data for all F-, G- and early K-type stars. The 795 M-type stars in our sample have a median rotation period of 15.4 days. We find an excess of M-type stars with periods less than 7.5 days that are potentially fast-rotating and fully convective. Measuring photometric variability in multiple Kepler quarters appears to be a straightforward and reliable way to determine the rotation periods of a large sample of active stars, including late-type stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا