A system of two-species, one-dimensional fermions, with an attractive two-body interaction of the derivative-delta type, features a scale anomaly. In contrast to the well-known two-dimensional case with contact interactions, and its one-dimensional cousin with three-body interactions (studied recently by some of us and others), the present case displays dimensional transmutation featuring a power-law rather than a logarithmic behavior. We use both the Schr{o}dinger equation and quantum field theory to study bound and scattering states, showing consistency between both approaches. We show that the expressions for the reflection $(R)$ and the transmission $(T)$ coefficients of the renormalized, anomalous derivative-delta potential are identical to those of the regular delta potential. The second-order virial coefficient is calculated analytically using the Beth-Uhlenbeck formula, and we make comments about the proper $epsilon_Brightarrow 0$ (where $epsilon_B$ is the bound-state energy) limit. We show the impact of the quantum anomaly (which appears as the binding energy of the two-body problem, or equivalently as Tans contact) on the equation of state and on other universal relations. Our emphasis throughout is on the conceptual and structural aspects of this problem.