Do you want to publish a course? Click here

Substrate effects on charged defects in two-dimensional materials

177   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials are strongly affected by the dielectric environment including substrates, making it an important factor in designing materials for quantum and electronic technologies. Yet, first-principles evaluation of charged defect energetics in 2D materials typically do not include substrates due to the high computational cost. We present a general continuum model approach to incorporate substrate effects directly in density-functional theory calculations of charged defects in the 2D material alone. We show that this technique accurately predicts charge defect energies compared to much more expensive explicit substrate calculations, but with the computational expediency of calculating defects in free-standing 2D materials. Using this technique, we rapidly predict the substantial modification of charge transition levels of two defects in MoS$_2$ and ten defects promising for quantum technologies in hBN, due to SiO$_2$ and diamond substrates. This establishes a foundation for high-throughput computational screening of new quantum defects in 2D materials that critically accounts for substrate effects.



rate research

Read More

260 - Feng Wu , Tyler Smart , Junqing Xu 2019
Identification and design of defects in two-dimensional (2D) materials as promising single photon emitters (SPE) requires a deep understanding of underlying carrier recombination mechanisms. Yet, the dominant mechanism of carrier recombination at defects in 2D materials has not been well understood, and some outstanding questions remain: How do recombination processes at defects differ between 2D and 3D systems? What factors determine defects in 2D materials as excellent SPE at room temperature? In order to address these questions, we developed first-principles methods to accurately calculate the radiative and non-radiative recombination rates at defects in 2D materials, using h-BN as a prototypical example. We reveal the carrier recombination mechanism at defects in 2D materials being mostly dominated by defect-defect state recombination in contrast to defect-bulk state recombination in most 3D semiconductors. In particular, we disentangle the non-radiative recombination mechanism into key physical quantities: zero-phonon line (ZPL) and Huang-Rhys factor. At the end, we identified strain can effectively tune the electron-phonon coupling at defect centers and drastically change non-radiative recombination rates. Our theoretical development serves as a general platform for understanding carrier recombination at defects in 2D materials, while providing pathways for engineering of quantum efficiency of SPE.
Formation energies of charged point defects in semiconductors are calculated using periodic supercells, which entail a divergence arising from long-range Coulombic interactions. The divergence is typically removed by the so-called jellium approach. Recently, Wu, Zhang and Pantelides [WZP, Phys. Rev. Lett. 119, 105501 (2017)] traced the origin of the divergence to the assumption that charged defects are formed by physically removing electrons from or adding electrons to the crystal, violating charge neutrality, a key principle of statistical mechanics that determines the Fermi level. An alternative theory was constructed by recognizing that charged defects form by trading carriers with the energy bands, whereby supercells are always charge-neutral so that no divergence is present and no ad-hoc procedures need to be adopted for calculations. Here we give a more detailed exposition of the foundations of both methods and show that the jellium approach can be derived from the statistical-mechanics-backed WZP definition by steps whose validity cannot be assessed a priori. In particular, the divergence appears when the charge density of band carriers is dropped, leaving a supercharged crystal. In the case of charged defects in two-dimensional (2D) materials, unphysical fields appear in vacuum regions. None of these pathological features are present in the reformulated theory. Finally, we report new calculations in both bulk and 2D materials. The WZP approach yields formation energies that differ from jellium values by up to ~1 eV. By analyzing the spatial distribution of wave functions and defect potentials, we provide insights into the inner workings of both methods and demonstrate that the failure of the jellium approach to include the neutralizing electron density of band carriers, as is the case in the physical system, is responsible for the numerical differences between the two methods.
118 - Jie Li , Ruqian Wu 2020
A new multifunctional 2D material is theoretically predicted based on systematic ab-initio calculations and model simulations for the honeycomb lattice of endohedral fullerene W@C28 molecules. It has structural bistability, ferroelectricity, multiple magnetic phases, and excellent valley characters and can be easily functionalized by the proximity effect with magnetic isolators such as MnTiO3. Furthermore, we may also manipulate the valley Hall and spin transport properties by selectively switch a few W@C28 molecules to the metastable phase. These findings pave a new way in integrate different functions in a single 2D material for technological innovations.
78 - Chunhao Guo , Junqing Xu , 2021
Substrates have strong effects on optoelectronic properties of two-dimensional (2D) materials, which have emerged as promising platforms for exotic physical phenomena and outstanding applications. To reliably interpret experimental results and predict such effects at 2D interfaces, theoretical methods accurately describing electron correlation and electron-hole interaction such as first-principles many-body perturbation theory are necessary. In our previous work [Phys. Rev. B 102, 205113(2020)], we developed the reciprocal-space linear interpolation method that can take into account the effects of substrate screening for arbitrarily lattice-mismatched interfaces at the GW level of approximation. In this work, we apply this method to examine the substrate effect on excitonic excitation and recombination of 2D materials by solving the Bethe-Salpeter equation. We predict the nonrigid shift of 1s and 2s excitonic peaks due to substrate screening, in excellent agreements with experiments. We then reveal its underlying physical mechanism through 2D hydrogen model and the linear relation between quasiparticle gaps and exciton binding energies when varying the substrate screening. At the end, we calculate the exciton radiative lifetime of monolayer hexagonal boron nitride with various substrates at zero and room temperature, as well as the one of WS2 where we obtain good agreement with experimental lifetime. Our work answers important questions of substrate effects on excitonic properties of 2D interfaces.
139 - Jie Li , Ruqian Wu 2020
Finding new two-dimensional (2D) materials with novel quantum properties is highly desirable for technological innovations. In this work, we studied a series of metal-organic frameworks (MOFs) with different metal cores and discovered various attractive properties, such as room-temperature magnetic ordering, strong perpendicular magnetic anisotropy, huge topological band gap (>200meV), and excellent spin-filtering performance. As many MOFs have been successfully synthesized in experiments, our results suggest realistic new 2D functional materials for the design of spintronic nanodevices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا