begin{abstract} The frequencies of the elements in a data stream are an important statistical measure and the task of estimating them arises in many applications within data analysis and machine learning. Two of the most popular algorithms for this problem, Count-Min and Count-Sketch, are widely used in practice. In a recent work [Hsu et al., ICLR19], it was shown empirically that augmenting Count-Min and Count-Sketch with a machine learning algorithm leads to a significant reduction of the estimation error. The experiments were complemented with an analysis of the expected error incurred by Count-Min (both the standard and the augmented version) when the input frequencies follow a Zipfian distribution. Although the authors established that the learned version of Count-Min has lower estimation error than its standard counterpart, their analysis of the standard Count-Min algorithm was not tight. Moreover, they provided no similar analysis for Count-Sketch. In this paper we resolve these problems. First, we provide a simple tight analysis of the expected error incurred by Count-Min. Second, we provide the first error bounds for both the standard and the augmented version of Count-Sketch. These bounds are nearly tight and again demonstrate an improved performance of the learned version of Count-Sketch. In addition to demonstrating tight gaps between the aforementioned algorithms, we believe that our bounds for the standa