No Arabic abstract
Motivated by the recent experiment by Marguerite et al. [1] on imaging in graphene samples, we investigate theoretically the dissipation induced by resonant impurities in the quantum Hall regime. The impurity induced forward scattering of electrons at quantum Hall edges leads to an enhanced phonon emission, which reaches its maximum when the impurity state is tuned to resonance by a scanning tip voltage. Our analysis of the effect of the tip potential on the dissipation reveals peculiar thermal rings around the impurities, in consistency with experimental observations. Remarkably, this impurity-induced dissipation reveals non-trivial features that are unique for chiral 1D systems such as quantum Hall edges. First, the dissipation is not accompanied by the generation of resistance. Second, this type of dissipation is highly nonlocal: a single impurity induces heat transfer to phonons along the whole edge.
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations. Dissipationless topologically protected states are thus of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often fragile against various dissipative mechanisms, which are difficult to probe directly because of their microscopic origins. By utilizing scanning nanothermometry, we visualize and investigate microscopic mechanisms undermining the apparent topological protection in the quantum Hall state in graphene. Our simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries because of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work generating process that we image directly and which involves elastic tunneling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. The independently visualized heat and entropy generation process, in contrast, occurs nonlocally upon inelastic resonant scattering off single atomic defects at graphene edges, while not affecting the transport. Our findings offer a crucial insight into the mechanisms concealing the true topological protection and suggest venues for engineering more robust quantum states for device applications.
The quantum Hall effect is a remarkable manifestation of quantized transport in a two-dimensional electron gas. Given its technological relevance, it is important to understand its development in realistic nanoscale devices. In this work we present how the appearance of different edge channels in a field-effect device is influenced by the inhomogeneous capacitance profile existing near the sample edges, a condition of particular relevance for graphene. We apply this practical idea to experiments on high quality graphene, demonstrating the potential of quantum Hall transport as a spatially resolved probe of density profiles near the edge of this two-dimensional electron gas.
The structure of edge modes at the boundary of quantum Hall (QH) phases forms the basis for understanding low energy transport properties. In particular, the presence of ``upstream modes, moving against the direction of charge current flow, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here we report on noise measurements at the edges of fractional QH (FQH) phases realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at $L= 4,mu$m or $10,mu$m away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for ``hole-conjugate FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remaining independent of length together with a remarkable agreement with our theoretical analysis demonstrates the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems. Our investigation opens the door to the study of upstream transport in more complex geometries and in edges of non-Abelian phases in graphene.
We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of the edge channels propagate in the same direction. It is shown that the quasiparticle tunneling picture and the electron tunneling picture give different scaling behaviors of the conductances, which indicates the existence of a crossover between the two pictures. When the direction of two edge-channels are opposite, e.g. in the case of MacDonalds edge construction for the $ u=2/3$ state, the phase diagram is divided into two domains giving different temperature dependence of the conductance.