The problem of data uncertainty has motivated the incorporation of robust optimization in various arenas, beyond the Markowitz portfolio optimization. This work presents the extension of the robust optimization framework for the minimization of downside risk measures, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We perform an empirical study of VaR and CVaR frameworks, with respect to their robust counterparts, namely, Worst-Case VaR and Worst-Case CVaR, using the market data as well as the simulated data. After discussing the practical usefulness of the robust optimization approaches from various standpoints, we infer various takeaways. The robust models in the case of VaR and CVaR minimization exhibit superior performance with respect to their ba