Do you want to publish a course? Click here

Chemically-controlled self-assembly of hybrid plasmonic nanopores on graphene

74   0   0.0 ( 0 )
 Added by Denis Garoli
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thanks to the spontaneous interaction between noble metals and biological scaffolds, nanomaterials with unique features can be achieved following relatively straightforward and cost-efficient synthetic procedures. Here, plasmonic silver nanorings are synthesized on a ring-like Peroxiredoxin (PRX) protein and used to assemble large arrays of functional nanostructures. The PRX protein drives the seeding growth of metal silver under wet reducing conditions, yielding nanorings with outer and inner diameters down to 28 and 3 nm, respectively. The obtained hybrid nanostructures can be deposited onto a solid-state membrane in order to prepare plasmonic nanopores. In particular, the interaction between graphene and PRX allows for the simple preparation of ordered arrays of plasmonic nanorings on a 2D-material membrane. This fabrication process can be finalized by drilling a nanometer scale pore in the middle of the ring. Fluorescence spectroscopic measurements have been used to demonstrate the plasmonic enhancement induced by the metallic ring. Finally, we support the experimental findings with some numerical simulations showing that the nanorings are endowed with a remarkable plasmonic field within the cavity. Our results represent a proof of concept of a fabrication process that could be suitable for nanopore-based technologies such as next-generation sequencing and single-molecule detection.



rate research

Read More

Nanopores of nanometer-size holes are very promising devices for many applications: DNA sequencing, sensory, biosensoring and molecular detectors, catalysis and water desalination. These applications require accurate control over nanopores size. We report computer simulation studies of regrowth and healing of graphene nanopores of different sizes ranging from 30 to 5 {AA}. We study mechanism, speed of nanopores regrowth and structure of healed areas in the wide range of temperatures. We report existence of at least two distinct healing mechanisms, one so called edge attachment where carbons are attached to the edges of graphene sheet and another mechanism that involves atom insertion directly into a sheet of graphene even in the absence of the edges. These findings point a significantly more complicated pathways for graphene annealing. They also provide an important enabling step in development of graphene based devices for numerous nanotechnology applications.
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorption in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphene-metal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 {mu}m, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 {mu}m with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 {mu}m. The measured responsivity is about 0.4 A/W under a bias voltage of -0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 {mu}m.
The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with subwavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.
Quantum dots optically excited in close proximity to a silver nanowire can launch nanowire surface plasmons. The challenge related to this promising hybrid system is to control the position of nanoemitters on the nanowire. We report on the use of two-photon photopolymerization process to strategically position quantum dots on nanowires at controlled sites. A parametric study of the distance between the quantum dots and the nanowire extremity shows that precise control of the position of the launching sites enables control of light intensity at the wire end, through surface plasmon propagation.
Sufficiently large depletion region for photocarrier generation and separation is a key factor for two-dimensional material optoelectronic devices, but few device configurations has been explored for a deterministic control of a space charge region area in graphene with convincing scalability. Here we investigate a graphene-silicon p-i-n photodiode defined in a foundry processed planar photonic crystal waveguide structure, achieving visible - near-infrared, zero-bias and ultrafast photodetection. Graphene is electrically contacting to the wide intrinsic region of silicon and extended to the p an n doped region, functioning as the primary photocarrier conducting channel for electronic gain. Graphene significantly improves the device speed through ultrafast out-of-plane interfacial carrier transfer and the following in-plane built-in electric field assisted carrier collection. More than 50 dB converted signal-to-noise ratio at 40 GHz has been demonstrated under zero bias voltage, with quantum efficiency could be further amplified by hot carrier gain on graphene-i Si interface and avalanche process on graphene-doped Si interface. With the device architecture fully defined by nanomanufactured substrate, this study is the first demonstration of post-fabrication-free two-dimensional material active silicon photonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا