Do you want to publish a course? Click here

On The Role of Supermassive Black Holes in Quenching Star Formation in Local Central Galaxies

90   0   0.0 ( 0 )
 Added by Nikhil Arora
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we analyze the role of AGN feedback in quenching star formation for massive, central galaxies in the local Universe. In particular, we compare the prediction of two semi-analytic models (L-GALAXIES and SAGE) featuring different schemes for AGN feedback, with the SDSS DR7 taking advantage of a novel technique for identifying central galaxies in an observational dataset. This enables us to study the correlation between the model passive fractions, which is predicted to be suppressed by feedback from an AGN, and the observed passive fractions in an observationally motivated parameter space. While the passive fractions for observed central galaxies show a good correlation with stellar mass and bulge mass, passive fractions in L-GALAXIES correlate with the halo and black hole mass. For SAGE, the passive fraction correlate with the bulge mass as well. Among the two models, SAGE has a smaller scatter in the black hole - bulge mass (M_BH - M_Bulge) relation and a slope that agrees better with the most recent observations at z sim 0. Despite the more realistic prescription of radio mode feedback in SAGE, there are still tensions left with the observed passive fractions and the distribution of quenched galaxies. These tensions may be due to the treatment of galaxies living in non-resolved substructures and the resulting higher merger rates that could bring cold gas which is available for star formation.



rate research

Read More

Numerical models of gas inflow towards a supermassive black hole (SMBH) show that star formation may occur in such an environment through the growth of a gravitationally unstable gas disc. We consider the effect of nuclear activity on such a scenario. We present the first three-dimensional grid-based radiative hydrodynamic simulations of direct collisions between infalling gas streams and a $4 times 10^6~text{M}_odot$ SMBH, using ray-tracing to incorporate radiation consistent with an active galactic nucleus (AGN). We assume inflow masses of $ approx 10^5~text{M}_odot$ and explore radiation fields of 10% and 100% of the Eddington luminosity ($L_text{edd}$). We follow our models to the point of central gas disc formation preceding star formation and use the Toomre Q parameter ($Q_T$) to test for gravitational instability. We find that radiation pressure from UV photons inhibits inflow. Yet, for weak radiation fields, a central disc forms on timescales similar to that of models without feedback. Average densities of $> 10^{8}~text{cm}^{-3}$ limit photo-heating to the disc surface allowing for $Q_Tapprox1$. For strong radiation fields, the disc forms more gradually resulting in lower surface densities and larger $Q_T$ values. Mass accretion rates in our models are consistent with 1%--60% of the Eddington limit, thus we conclude that it is unlikely that radiative feedback from AGN activity would inhibit circumnuclear star formation arising from a massive inflow event.
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows its full powerful and clearness in the presence of supermassive black holes (SPMHs). We find the main galaxy and central black hole magnitudes: halo radius r_h , halo mass M_h, black hole mass M_BH, velocity dispersion, phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The SMBH masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution show that with SMBHs, both WDM regimes: classical (Boltzmann dilute) and quantum (compact) do necessarily co-exist in any galaxy: from the smaller and compact galaxies to the largest ones. The transition from the quantum to the classical region occurs precisely at the same point r_A where the chemical potential vanishes. A novel halo structure with three regions shows up: A small quantum compact core of radius r_A around the SMBH, followed by a less compact region till the BH influence radius r_i, and then for r> r_i the known halo galaxy shows up with its astrophysical size. Three representative families of galaxy plus central SMBH solutions are found and analyzed:small, medium and large galaxies having SMBH masses of 10^5, 10^7 and 10^9 M_sun respectively. A minimum galaxy size and mass ~ 10^7 M_sun larger than the one without SMBH is found. Small galaxies in the range 10^4 M_sun < M_h < 10^7 M_sun cannot harbor central SMBHs. We find novel scaling M_BH - r_h - M_h relations. The galaxy equation of state is derived: The pressure P(r) takes huge values in the SMBH vecinity and then sharply decreases entering the classical region following a local perfect gas behaviour.(Abridged)
We quantitatively investigate the dependence of central galaxy HI mass ($M_{rm HI}$) on the stellar mass ($M_ast$), halo mass ($M_{rm h}$), star formation rate (SFR), and central stellar surface density within 1 kpc ($Sigma_1$), taking advantage of the HI spectra stacking technique using both the Arecibo Fast Legacy ALFA Survey and the Sloan Digital Sky Survey. We find that the shapes of $M_{rm HI}$-$M_{rm h}$ and $M_{rm HI}$-$M_ast$ relations are remarkably similar for both star-forming and quenched galaxies, with massive quenched galaxies having constantly lower HI masses of around 0.6 dex. This similarity strongly suggests that neither halo mass nor stellar mass is the direct cause of quenching, but rather the depletion of HI reservoir. While the HI reservoir for low-mass galaxies of $M_ast<10^{10.5}M_odot$ strongly increases with $M_{rm h}$, more massive galaxies show no significant dependence of $M_{rm HI}$ on $M_{rm h}$, indicating the effect of halo to determine the smooth cold gas accretion. We find that the star formation and quenching of central galaxies are directly regulated by the available HI reservoir, with an average relation of ${rm SFR}propto M_{rm HI}^{2.75}/M_ast^{0.40}$, implying a quasi-steady state of star formation. We further confirm that galaxies are depleted of their HI reservoir once they drop off the star-formation main sequence and there is a very tight and consistent correlation between $M_{rm HI}$ and $Sigma_1$ in this phase, with $M_{rm HI}proptoSigma_1^{-2}$. This result is in consistent with the compaction-triggered quenching scenario, with galaxies going through three evolutionary phases of cold gas accretion, compaction and post-compaction, and quenching.
90 - U. Maio , S. Borgani , B. Ciardi 2018
We present cosmological hydrodynamical simulations including atomic and molecular non-equilibrium chemistry, multi-frequency radiative transfer (0.7-100 eV sampled over 150 frequency bins) and stellar population evolution to investigate the host candidates of the seeds of supermassive black holes coming from direct collapse of gas in primordial haloes (direct-collapse black holes, DCBHs). We consistently address the role played by atomic and molecular cooling, stellar radiation and metal spreading of C, N, O, Ne, Mg, Si, S, Ca, Fe, etc. from primordial sources, as well as their implications for nearby quiescent proto-galaxies under different assumptions for early source emissivity, initial mass function and metal yields. We find that putative DCBH host candidates need powerful primordial stellar generations, since common solar-like stars and hot OB-type stars are neither able to determine the conditions for direct collapse nor capable of building up a dissociating Lyman-Werner background radiation field. Thermal and molecular features of the identified DCBH host candidates in the scenario with very massive primordial stars seem favourable, with illuminating Lyman-Werner intensities featuring values of 1-50 J21. Nevertheless, additional non-linear processes, such as merger events, substructure formation, rotational motions and photo-evaporation, should inhibit pure DCBH formation in 2/3 of the cases. Local turbulence may delay gas direct collapse almost irrespectively from other environmental conditions. The impact of large Lyman-Werner fluxes at distances smaller than 5 kpc is severely limited by metal pollution.
Quiescent galaxies with little or no ongoing star formation dominate the galaxy population above $M_{*}sim 2 times 10^{10}~M_{odot}$, where their numbers have increased by a factor of $sim25$ since $zsim2$. Once star formation is initially shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat subsequently accreted gas from stellar mass loss or mergers that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centers of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized gas velocity gradients from which we infer the presence of centrally-driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as $10%$ of the population at $M_* sim 2 times 10^{10}~ M_{odot}$. In a prototypical example, we calculate that the energy input from the galaxys low-level active nucleus is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا