A General Prescription for Semi-Classical Holography


Abstract in English

We present a version of holographic correspondence where bulk solutions with sources localized on the holographic screen are the key objects of interest, and not bulk solutions defined by their boundary values on the screen. We can use this to calculate semi-classical holographic correlators in fairly general spacetimes, including flat space with timelike screens. We find that our approach reduces to the standard Dirichlet-like approach, when restricted to the boundary of AdS. But in more general settings, the analytic continuation of the Dirichlet Green function does not lead to a Feynman propagator in the bulk. Our prescription avoids this problem. Furthermore, in Lorentzian signature we find an additional homogeneous mode. This is a natural proxy for the AdS normalizable mode and allows us to do bulk reconstruction. We also find that the extrapolate and differential dictionaries match. Perturbatively adding bulk interactions to these discussions is straightforward. We conclude by elevating some of these ideas into a general philosophy about mechanics and field theory. We argue that localizing sources on suitable submanifolds can be an instructive alternative formalism to treating these submanifolds as boundaries.

Download