Nanoparticles manipulation in 3D nanotips excited with plasmonic vortex


Abstract in English

Recent advances in nanotechnologies have prompted the need for tools to accurately and non invasively manipulate individual nanoobjects. Among the possible strategies, optical forces have been widely used to enable nano optical tweezers capable of trapping or moving a specimen with unprecedented accuracy. Here, we propose an architecture consisting of a nanotip excited with a plasmonic vortex enabling effective dynamical control of nanoparticles in three dimensions. The optical field generated by the structure can be used to manipulate single dielectric nanoparticles acting on the total angular momentum of light used to illuminate the structure. We demonstrate that it is possible to stably trap or force the beaming of the particle from specific points, thus enabling a new platform for nanoparticle manipulation and sorting.

Download