No Arabic abstract
Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applications of the CV-QKD because of the difficulty of optimizing such codes for different low SNRs. In this paper, we propose a rateless reconciliation protocol combined multidimensional scheme with Raptor codes that not only maintains the rateless property but also achieves high efficiency in different SNRs using just one degree distribution. It significantly decreases the complexity of optimization and increases the robustness of the system. Using this protocol, the CV-QKD system can operate with the optimal modulation variance which maximizes the secret key rate. Simulation results show that the proposed protocol can achieve reconciliation efficiency of more than 95% within the range of SNR from -20 dB to 0 dB. It also shows that we can obtain a high secret key rate at arbitrary distances in a certain range and achieve a secret key rate of about 5*10^(-4) bits/pulse at a maximum distance of 132 km (corresponding SNR is -20dB) that is higher than previous works. The proposed protocol can maintain high efficient key extraction under the wide range of SNRs and paves the way toward the practical application of CV-QKD systems in flexible scenarios.
Reconciliation is a crucial procedure in post-processing of continuous variable quantum key distribution (CV-QKD) system, which is used to make two distant legitimate parties share identical corrected keys. The adaptive reconciliation is necessary and important for practical systems to cope with the variable channel. Many researchers adopt the punctured LDPC codes to implement adaptive reconciliation. In this paper, a novel rateless reconciliation protocol based on spinal code is proposed, which can achieve a high-efficiency and adaptive reconciliation in a larger range of SNRs. Due to the short codes length and simple tructure, our protocol is easy to implement without the complex codes designs of fixed rate codes, e.g., LDPC codes. Meanwhile, the structure of our protocol is highly parallel, which is suitable for hardware implementation, thus it also has the potential of high-speed hardware implementation. Besides, the security of proposed protocol is proved in theory. Experiment results show that the reconciliation efficiency maintains around 95% for ranging SNRs in a larger range (0,0.5), even exceeds 96.5% at extremely low SNR (<= 0.03) by using this novel scheme. The proposed protocol makes the long-distance CV-QKD systems much easier and stable to perform a high-performance and adaptive reconciliation.
In the practical continuous-variable quantum key distribution (CV-QKD) system, the postprocessing process, particularly the error correction part, significantly impacts the system performance. Multi-edge type low-density parity-check (MET-LDPC) codes are suitable for CV-QKD systems because of their Shannon-limit-approaching performance at a low signal-to-noise ratio (SNR). However, the process of designing a low-rate MET-LDPC code with good performance is extremely complicated. Thus, we introduce Raptor-like LDPC (RL-LDPC) codes into the CV-QKD system, exhibiting both the rate compatible property of the Raptor code and capacity-approaching performance of MET-LDPC codes. Moreover, this technique can significantly reduce the cost of constructing a new matrix. We design the RL-LDPC matrix with a code rate of 0.02 and easily and effectively adjust this rate from 0.016 to 0.034. Simulation results show that we can achieve more than 98% reconciliation efficiency in a range of code rate variation using only one RL-LDPC code that can support high-speed decoding with an SNR less than -16.45 dB. This code allows the system to maintain a high key extraction rate under various SNRs, paving the way for practical applications of CV-QKD systems with different transmission distances.
Reconciliation is an essential procedure for continuous-variable quantum key distribution (CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However, its quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio (SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC protocol, named Rotation-based SEC (RSEC), is proposed through performing a random orthogonal rotation on the raw data before quantization, and deducing a new estimator for quantized sequences. Moreover, the RSEC protocol is implemented with polar codes. Experimental results show that the proposed protocol can reach up to a quantization efficiency of about 99%, and maintains at around 96% even at the relatively low SNRs $(0.5,1)$, which theoretically extends the secure distance to about 45 km. When implemented with the polar codes with block length of 16 Mb, the RSEC can achieve a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of finite-size effects, we achieve a secret key rate of $7.83times10^{-3}$ bits/pulse at a distance of 33.93 km (the corresponding SNR value is 1). These results indicate that the proposed protocol significantly improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.
We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of fading channels. These are lossy channels whose transmissivity changes according to a probability distribution. This is typical in communication scenarios where remote parties are connected by free-space links subject to atmospheric turbulence. In this work, we assume the worst-case scenario where an eavesdropper has full control of a fast fading process, so that she chooses the instantaneous transmissivity of a channel, while the remote parties can only detect the mean statistical process. In our study, we consider coherent-state protocols run in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration and a three-party measurement-device-independent network. We show that, regardless of the advantage given to the eavesdropper (full control of fading), these protocols can still achieve high rates.
Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate of a QKD system, most studies on reconciliation primarily focused on improving the efficiency. With the increasing performance of QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems.