Do you want to publish a course? Click here

Fermion Dark Matter and Radiative Neutrino Masses from Spontaneous Lepton Number Breaking

163   0   0.0 ( 0 )
 Added by Roberto Lineros
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the viability of having a fermion Dark Matter particle below the TeV mass scale in connection to the neutrino mass generation mechanism. The simplest realization is achieved within the scotogenic model where neutrino masses are generated at the 1-loop level. Hence, we consider the case where the dark matter particle is the lightest $mathbb{Z}_2$-odd Majorana fermion running in the neutrino mass loop. We assume that lepton number is broken dynamically due to a lepton number carrier scalar singlet which acquires a non-zero vacuum expectation value. In the present scenario the Dark Matter particles can annihilate via $t$- and $s$-channels. The latter arises from the mixing between the new scalar singlet and the Higgs doublet. We identify three different Dark Matter mass regions below 1 TeV that can account for the right amount of dark matter abundance in agreement with current experimental constraints. We compute the Dark Matter-nucleon spin-independent scattering cross-section and find that the model predicts spin-independent cross-sections ``naturally dwelling below the current limit on direct detection searches of Dark Matter particles reported by XENON1T.



rate research

Read More

We propose a framework that addresses the origin of neutrino mass, explains the observed discrepancies in the electron and the muon anomalous magnetic moments (AMMs) data and incorporates the dark matter (DM) relic abundance. Both the neutrino mass and the lepton AMMs are generated at one-loop level mediated by a common set of beyond the Standard Model (SM) states. In this class of models, the SM is extended with vector-like charged fermion and scalar multiplets, all odd under an imposed $mathcal{Z}_2$ symmetry, which stabilizes the fermionic or scalar DM candidate residing in one of them. Two scalar multiplets appear in the AMM loops, thus allowing for different signs of their contributions, in agreement with the observed discrepancies which are of opposite sign for electron and muon. The vector-like fermions give rise to large new physics contributions to the lepton AMMs via chirally enhanced terms that are proportional to their mass. To demonstrate the viability of this framework, we perform a detailed study of a particular model for which a fit to the neutrino masses and mixing together with lepton AMMs are provided. Furthermore, DM phenomenology and collider signatures are explored.
108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
We show that if global lepton number symmetry is spontaneously broken in a post inflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known Majoron paradigm for neutrino mass generation. We propose some realistic examples which allow spontaneous lepton number breaking to be safe from such domain walls.
Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentally accessible LNV observables -- except for neutrinoless double-beta decay -- are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon-number-violating phenomena, identifying scenarios where the allowed rates for $mu^-to e^+$-conversion in nuclei are potentially accessible to next-generation experiments.
265 - Guan-nan Li , Gang Guo , Bo Ren 2012
We study phenomenological implications of a radiative inverse seesaw dark matter model. In this model, because neutrino masses are generated at two loop level with inverse seesaw, the new physics mass scale can be as low as a few hundred GeV and the model also naturally contain dark matter candidate. The Yukawa couplings linking the SM leptons and new particles can be large. This can lead to large lepton flavor violating effects. We find that future experimental data on $mu to e gamma$ and $mu - e$ conversion can further test the model. The new charged particles can affect significantly the $h to gamma gamma$ branching ratio in the SM. The model is able to explain the deviation between the SM prediction and the LHC data. We also study some LHC signatures of the new particles in the model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا