No Arabic abstract
Optimal portfolio selection problems are determined by the (unknown) parameters of the data generating process. If an investor want to realise the position suggested by the optimal portfolios he/she needs to estimate the unknown parameters and to account the parameter uncertainty into the decision process. Most often, the parameters of interest are the population mean vector and the population covariance matrix of the asset return distribution. In this paper we characterise the exact sampling distribution of the estimated optimal portfolio weights and their characteristics by deriving their sampling distribution which is present in terms of a stochastic representation. This approach possesses several advantages, like (i) it determines the sampling distribution of the estimated optimal portfolio weights by expressions which could be used to draw samples from this distribution efficiently; (ii) the application of the derived stochastic representation provides an easy way to obtain the asymptotic approximation of the sampling distribution. The later property is used to show that the high-dimensional asymptotic distribution of optimal portfolio weights is a multivariate normal and to determine its parameters. Moreover, a consistent estimator of optimal portfolio weights and their characteristics is derived under the high-dimensional settings. Via an extensive simulation study, we investigate the finite-sample performance of the derived asymptotic approximation and study its robustness to the violation of the model assumptions used in the derivation of the theoretical results.
In this study, we have investigated empirically the effects of market properties on the degree of diversification of investment weights among stocks in a portfolio. The weights of stocks within a portfolio were determined on the basis of Markowitzs portfolio theory. We identified that there was a negative relationship between the influence of market properties and the degree of diversification of the weights among stocks in a portfolio. Furthermore, we noted that the random matrix theory method could control the properties of correlation matrix between stocks; this may be useful in improving portfolio management for practical application.
The paper predicts an Efficient Market Property for the equity market, where stocks, when denominated in units of the growth optimal portfolio (GP), have zero instantaneous expected returns. Well-diversified equity portfolios are shown to approximate the GP, which explains the well-observed good performance of equally weighted portfolios. The proposed hierarchically weighted index (HWI) is shown to be an even better proxy of the GP. It sets weights equal within industrial and geographical groupings of stocks. When using the HWI as proxy of the GP the Efficient Market Property cannot be easily rejected and appears to be very robust.
We develop the idea of using Monte Carlo sampling of random portfolios to solve portfolio investment problems. In this first paper we explore the need for more general optimization tools, and consider the means by which constrained random portfolios may be generated. A practical scheme for the long-only fully-invested problem is developed and tested for the classic QP application. The advantage of Monte Carlo methods is that they may be extended to risk functions that are more complicated functions of the return distribution, and that the underlying return distribution may be computed without the classical Gaussian limitations. The optimization of quadratic risk-return functions, VaR, CVaR, may be handled in a similar manner to variability ratios such as Sortino and Omega, or mathematical constructions such as expected utility and its behavioural finance extensions. Robustification is also possible. Grid computing technology is an excellent platform for the development of such computations due to the intrinsically parallel nature of the computation, coupled to the requirement to transmit only small packets of data over the grid. We give some examples deploying GridMathematica, in which various investor risk preferences are optimized with differing multivariate distributions. Good comparisons with established results in Mean-Variance and CVaR optimization are obtained when ``edge-vertex-biased sampling methods are employed to create random portfolios. We also give an application to Omega optimization.
We present an online approach to portfolio selection. The motivation is within the context of algorithmic trading, which demands fast and recursive updates of portfolio allocations, as new data arrives. In particular, we look at two online algorithms: Robust-Exponentially Weighted Least Squares (R-EWRLS) and a regularized Online minimum Variance algorithm (O-VAR). Our methods use simple ideas from signal processing and statistics, which are sometimes overlooked in the empirical financial literature. The two approaches are evaluated against benchmark allocation techniques using 4 real datasets. Our methods outperform the benchmark allocation techniques in these datasets, in terms of both computational demand and financial performance.
In this paper, using the shrinkage-based approach for portfolio weights and modern results from random matrix theory we construct an effective procedure for testing the efficiency of the expected utility (EU) portfolio and discuss the asymptotic behavior of the proposed test statistic under the high-dimensional asymptotic regime, namely when the number of assets $p$ increases at the same rate as the sample size $n$ such that their ratio $p/n$ approaches a positive constant $cin(0,1)$ as $ntoinfty$. We provide an extensive simulation study where the power function and receiver operating characteristic curves of the test are analyzed. In the empirical study, the methodology is applied to the returns of S&P 500 constituents.