No Arabic abstract
Recent interferometric observations have shown bright HCN emission from the nu2=1 vibrational state arising in buried nuclear regions of galaxies, indicating an efficient pumping of the nu2=1 state through absorption of 14 $mu$m continuum photons. We have modeled the continuum and HCN vibrational line emission in these regions, characterized by high column densities of dust and high luminosities, with a spherically symmetric approach, simulating both a central heating source (AGN) and a compact nuclear starburst (SB). We find that when the H2 columns become very high, N_{H2}>~10^{25} cm-2, trapping of continuum photons within the nuclear region dramatically enhances the dust temperature (Tdust) in the inner regions, even though the predicted spectral energy distribution as seen from outside becomes relatively cold. The models thus predict bright continuum at millimeter wavelengths for luminosity surface brightness (averaged over the model source) of ~10^{8} Lsun pc^{-2}. This {it greenhouse} effect significantly enhances the mean mid-infrared intensity within the dusty volume, populating the nu2=1 state to the extent that the HCN vibrational lines become optically thick. AGN models yield higher Tdust in the inner regions and higher peak (sub)millimeter continuum brightness than SB models, but similar HCN vibrational J=3-2 and 4-3 emission owing to both optical depth effects and a moderate impact of high tdust on these low-J lines. The observed HCN vibrational emission in several galaxies can be accounted for with a HCN abundance of ~10^{-6} (relative to H2) and luminosity surface brightness in the range (0.5-2)x10^{8}$ Lsun pc^{-2}, predicting a far-infrared photosphere with Tdust}~80-150 K --in agreement with the values inferred from far-infrared molecular absorption.
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this class is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
Direct numerical integrations of the Fokker-Planck equation in energy-angular momentum space are carried out for stars orbiting a supermassive black hole (SBH) at the center of a galaxy. The algorithm, which was described in detail in an earlier paper, includes diffusion coefficients that describe the effects of both random (classical) and correlated (resonant) encounters. Steady-state solutions are similar to the Bahcall-Wolf solution but are modified at small radii due to the higher rate of diffusion in angular momentum, which results in a low-density core. The core radius is a few percent of the influence radius of the SBH. The corresponding phase-space density f(E,L) drops nearly to zero at low energies, implying almost no stars on tightly-bound orbits about the SBH. Steady-state rates of stellar disruption are presented, and a simple analytic expression is found that reproduces the numerical feeding rates with good accuracy. The distribution of periapsides of disrupted stars is also computed. Time-dependent solutions are also computed, starting from initial conditions similar to those produced by a binary SBH. In these models, feeding rates evolve on two timescales: rapid evolution during which the region evacuated by the massive binary is refilled by angular-momentum diffusion; and slower evolution as diffusion in energy causes the density profile at large radii to attain the Bahcall-Wolf form.
Diffuse soft X-ray line emission is commonly used to trace the thermal and chemical properties of the hot interstellar medium, as well as its content, in nearby galaxies. Although resonant line scattering complicates the interpretation of the emission, it also offers an opportunity to measure the kinematics of the medium. We have implemented a direct Monte Carlo simulation scheme that enables us to account for resonant scattering effect in the medium, in principle, with arbitrary spatial, thermal, chemical, and kinematic distributions. Here we apply this scheme via dimensionless calculation to an isothermal, chemically uniform, and spherically symmetric medium with a radial density distribution characterized by a $beta$-model. This application simultaneously account for both optical depth-dependent spatial distortion and intensity change of the resonant line emission due to the scattering, consistent with previous calculations. We further apply the modeling scheme to the OVII and OVIII emission line complex observed in the XMM-Newton RGS spectrum of the M31 bulge. This modeling, though with various limitations due to its simplicity, shows that the resonant scattering could indeed account for much of the spatial distortion of the emission, as well as the relative strengths of the lines, especially the large forbidden to resonant line ratio of the OVII He$alpha$ triplet. We estimate the isotropic turbulence Mach number of the medium in M31 as $sim0.17$ for the first time and the line-emitting gas temperature as $sim2.3times10^6$ K. We conclude that the resonant scattering may in general play an important role in shaping the soft X-ray spectra of diffuse hot gas in normal galaxies.
In order to better understand how active galactic nuclei (AGN) effect the interstellar media of their host galaxies, we perform a meta-analysis of the CO emission for a sample of $z=0.01-4$ galaxies from the literature with existing CO detections and well-constrained AGN contributions to the infrared (67 galaxies). Using either Spitzer/IRS mid-IR spectroscopy or Spitzer+Herschel colors we determine the fraction of the infrared luminosity in each galaxy that can be attributed to heating by the AGN or stars. We calculate new average CO spectral line ratios (primarily from Carilli & Walter 2013) to uniformly scale the higher-$J$ CO detections to the ground state and accurately determine our samples molecular gas masses. We do not find significant differences in the gas depletion timescales/star formation efficiencies (SFEs) as a function of the mid-infrared AGN strength ($f_{rm AGN}({rm MIR})$ or $L_{rm IR} ({rm AGN})$), which indicates that the presence of an IR-bright AGN is not a sufficient sign-post of galaxy quenching. We also find that the dust-to-gas ratio is consistent for all sources, regardless of AGN emission, redshift, or $L_{rm IR}$, indicating that dust is likely a reliable tracer of gas mass for massive dusty galaxies (albeit with a large degree of scatter). Lastly, if we classify galaxies as either AGN or star formation dominated, we do not find a robust statistically significant difference between their CO excitation.
We present the analysis of the emission line galaxies members of 46 low redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey, Fasano et al. 2006). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star forming galaxies and classified employing diagnostic diagrams. We have examined the emission line properties and frequencies of star forming galaxies, transition objects and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency with respect to control samples, and by a systematically lower Balmer emission line equivalent width and luminosity (up to one order of magnitude in equivalent width with respect to control samples for transition objects) that implies a lower amount of ionised gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (approx. 10 - 20% of all emission line galaxies) is detected among WINGS cluster galaxies. With respect to Hii sources they are a factor of approx. 1.5 more frequent than (or at least as frequent as) in control samples. Transition objects and LINERs in cluster are most affected in terms of line equivalent width by the environment and appear predominantly consistent with retired galaxies. Shock heating can be a possible gas excitation mechanism able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks.