Do you want to publish a course? Click here

Classification of symmetry-protected topological phases in two-dimensional many body-localized systems

148   0   0.0 ( 0 )
 Added by Thorsten Wahl
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use low-depth quantum circuits, a specific type of tensor networks, to classify two-dimensional symmetry-protected topological many-body localized phases. For (anti-)unitary on-site symmetries we show that the (generalized) third cohomology class of the symmetry group is a topological invariant; however our approach leaves room for the existence of additional topological indices. We argue that our classification applies to quasi-periodic systems in two dimensions and systems with true random disorder within times which scale superexponentially with the inverse interaction strength. Our technique might be adapted to supply arguments suggesting the same classification for two-dimensional symmetry-protected topological ground states with a rigorous proof.



rate research

Read More

We provide a classification of symmetry-protected topological (SPT) phases of many-body localized (MBL) spin and fermionic systems in one dimension. For spin systems, using tensor networks we show that all eigenstates of these phases have the same topological index as defined for SPT ground states. For unitary on-site symmetries, the MBL phases are thus labeled by the elements of the second cohomology group of the symmetry group. A similar classification is obtained for anti-unitary on-site symmetries, time-reversal symmetry being a special case with a $mathbb{Z}_2$ classification (cf. [Phys. Rev. B 98, 054204 (2018)]). For the classification of fermionic MBL phases, we propose a fermionic tensor network diagrammatic formulation. We find that fermionic MBL systems with an (anti-)unitary symmetry are classified by the elements of the (generalized) second cohomology group if parity is included into the symmetry group. However, our approach misses a $mathbb{Z}_2$ topological index expected from the classification of fermionic SPT ground states. Finally, we show that all found phases are stable to arbitrary symmetry-preserving local perturbations. Conversely, different topological phases must be separated by a transition marked by delocalized eigenstates. Finally, we demonstrate that the classification of spin systems is complete in the sense that there cannot be any additional topological indices pertaining to the properties of individual eigenstates, but there can be additional topological indices that further classify Hamiltonians.
Many-body localized systems in which interactions and disorder come together defy the expectations of quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing nonequilibrium dynamics. What is less clear, however, is how topological features interplay with many-body localized phases as well as the nature of the transition between a topological and a trivial state within the latter. In this work, we numerically address these questions, using a combination of extensive tensor network calculations, specifically DMRG-X, as well as exact diagonalization, leading to a comprehensive characterization of Hamiltonian spectra and eigenstate entanglement properties.
It is known that strong disorder in closed quantum systems leads to many-body localization (MBL), and that this quantum phase can be destroyed by coupling to an infinitely large Markovian environment. However, the stability of the MBL phase is less clear when the system and environment are of finite and comparable size. Here, we study the stability and eventual localization properties of a disordered Heisenberg spin chain coupled to a finite environment, and extensively explore the effects of environment disorder, geometry, initial state and system-bath coupling strength. Our numerical results indicate that in most cases, the system retains its localization properties despite the coupling to the finite environment, albeit to a reduced extent. However, in cases where the system and environment is strongly coupled in the ladder configuration, the eventual localization properties are highly dependent on the initial state, and could lead to either thermalization or localization.
94 - Thorsten B. Wahl 2017
We prove that all eigenstates of many-body localized symmetry protected topological systems with time reversal symmetry have four-fold degenerate entanglement spectra in the thermodynamic limit. To that end, we employ unitary quantum circuits where the number of sites the gates act on grows linearly with the system size. We find that the corresponding matrix product operator representation has similar local symmetries as matrix product ground states of symmetry protected topological phases. Those local symmetries give rise to a $mathbb{Z}_2$ topological index, which is robust against arbitrary perturbations so long as they do not break time reversal symmetry or drive the system out of the fully many-body localized phase.
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some landmarks within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا