No Arabic abstract
The canonical quantization of a massive symmetric rank-two tensor in string theory, which contains two Stueckelberg fields, was studied. As a preliminary study, we performed a canonical quantization of the Proca model to describe a massive vector particle that shares common properties with the massive symmetric rank-two tensor model. By performing a canonical analysis of the Lagrangian, which describes the symmetric rank-two tensor, obtained by Siegel and Zwiebach (SZ) from string field theory, we deduced that the Lagrangian possesses only first class constraints that generate local gauge transformation. By explicit calculations, we show that the massive symmetric rank-two tensor theory is gauge invariant only in the critical dimension of open bosonic string theory, i.e., $d=26$. This emphasizes that the origin of local symmetry is the nilpotency of the Becchi-Rouet-Stora-Tyutin (BRST) operator, which is valid only in the critical dimension. For a particular gauge imposed on the Stueckelberg fields, the gauge-invariant Lagrangian of the SZ model reduces to the Fierz-Pauli Lagrangian of a massive spin-two particle. Thus, the Fierz-Pauli Lagrangian is a gauge-fixed version of the gauge-invariant Lagrangian for a massive symmetric rank-two tensor. By noting that the Fierz-Pauli Lagrangian is not suitable for studying massive spin-two particles with small masses, we propose the transverse-traceless (TT) gauge to quantize the SZ model as an alternative gauge condition. In the TT gauge, the two Stueckelberg fields can be decoupled from the symmetric rank-two tensor and integrated trivially. The massive spin-two particle can be described by the SZ model in the TT gauge, where the propagator of the massive spin-two particle has a well-defined massless limit.
Spin-two particles appear in the spectra of both open and closed string theories. We studied a graviton and massive symmetric rank-two tensor in string theory, both of which carry spin two. A graviton is a massless spin-two particle in closed string theory while a symmetric rank-two tensor is a massive particle with spin two in open string theory. Using Polyakovs string path integral formulation of string scattering amplitudes, we calculated cubic interactions of both spin-two particles explicitly, including $ap$-corrections (string corrections). We observed that the cubic interactions of the massive spin-two particle differed from those of the graviton. The massive symmetric rank-two tensor in open string theory becomes massless in the high energy limit where $ap rightarrow infty$ and $ap$-correction terms, containing higher derivatives, dominate: In this limit the local cubic action of the symmetric rank-two tensor of open string theory coincides with that of the graviton in closed string theory.
A method of constructing a canonical gauge invariant quantum formulation for a non-gauge classical theory depending on a set of parameters is advanced and then applied to the theory of closed bosonic string interacting with massive background fields. It is shown that within the proposed formulation the correct linear equations of motion for background fields arise.
A method of constructing a canonical gauge invariant quantum formulation for a non-gauge classical theory depending on a set of parameters is advanced and then applied to the theory of closed bosonic string interacting with massive background fields. Choosing an ordering prescription and developing a suitable regularization technique we calculate quantum guage algebra up to linear order in background fields. Requirement of closure for the algebra leads to equations of motion for massive background fields which appear to be consistent with the structure of string spectrum.
We propose a method of constructing a gauge invariant canonical formulation for non-gauge classical theory which depends on a set of parameters. Requirement of closure for algebra of operators generating quantum gauge transformations leads to restrictions on parameters of the theory. This approach is then applied to bosonic string theory coupled to massive background fields. It is shown that within the proposed canonical formulation the correct linear equations of motion for background fields arise.
We introduce new purely twistorial scale-invariant action describing the composite bosonic D=4 Nambu-Goto string with target space parametrized by the pair of D=4 twistors. We show that by suitable gauge fixing of local scaling one gets the bilinear twistorial action and canonical quantization rules for the two-dimensional twistor-string fields. We consider the Poisson brackets of all constraints characterizing our model and we obtain four first class constraints describing two Virasoro constraints and two U(1)xU(1) Kac-Moody (KM) local phase transformations.