Cubulating Surface-by-free Groups


Abstract in English

Let $$1 to H to G to Q to 1$$ be an exact sequence where $H= pi_1(S)$ is the fundamental group of a closed surface $S$ of genus greater than one, $G$ is hyperbolic and $Q$ is finitely generated free. The aim of this paper is to provide sufficient conditions to prove that $G$ is cubulable and construct examples satisfying these conditions. The main result may be thought of as a combination theorem for virtually special hyperbolic groups when the amalgamating subgroup is not quasiconvex. Ingredients include the theory of tracks, the quasiconvex hierarchy theorem of Wise, the distance estimates in the mapping class group from subsurface projections due to Masur-Minsky and the model geometry for doubly degenerate Kleinian surface groups used in the proof of the ending lamination theorem.

Download