Do you want to publish a course? Click here

Black hole collisions, instabilities, and cosmic censorship violation at large D

87   0   0.0 ( 0 )
 Added by David Licht
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the evolution of black hole collisions and ultraspinning black hole instabilities in higher dimensions. These processes can be efficiently solved numerically in an effective theory in the limit of large number of dimensions D. We present evidence that they lead to violations of cosmic censorship. The post-merger evolution of the collision of two black holes with total angular momentum above a certain value is governed by the properties of a resonance-like intermediate state: a long-lived, rotating black bar, which pinches off towards a naked singularity due to an instability akin to that of black strings. We compute the radiative loss of spin for a rotating bar using the quadrupole formula at finite D, and argue that at large enough D ---very likely for $Dgtrsim 8$, but possibly down to D=6--- the spin-down is too inefficient to quench this instability. We also study the instabilities of ultraspinning black holes by solving numerically the time evolution of axisymmetric and non-axisymmetric perturbations. We demonstrate the development of transient black rings in the former case, and of multi-pronged horizons in the latter, which then proceed to pinch and, arguably, fragment into smaller black holes.



rate research

Read More

We study collisions of boosted rotating black holes in $D=6$ and 7 spacetime dimensions with a non-zero impact parameter. We find that there exists an open set of initial conditions such that the intermediate state of the collision is a dumbbell-like horizon which is unstable to a Gregory-Laflamme-type instability. As is usually the case for similar unstable configurations, the evolution of such an instability leads to a pinch off of the horizon in finite asymptotic time, thus forming a naked singularity. Hence, this is the first fully genuine violation of Weak Cosmic Censorship conjecture in higher dimensional asymptotically flat spacetimes.
We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
In the large D limit, and under certain circumstances, it has recently been demonstrated that black hole dynamics in asymptotically flat spacetime reduces to the dynamics of a non gravitational membrane propagating in flat D dimensional spacetime. We demonstrate that this correspondence extends to all orders in a 1/D expansion and outline a systematic method for deriving the corrected membrane equation in a power series expansion in 1/D. As an illustration of our method we determine the first subleading corrections to the membrane equations of motion. A qualitatively new effect at this order is that the divergence of the membrane velocity is nonzero and proportional to the square of the shear tensor reminiscent of the entropy current of hydrodynamics. As a test, we use our modified membrane equations to compute the corrections to frequencies of light quasinormal modes about the Schwarzschild black hole and find a perfect match with earlier computations performed directly in the gravitational bulk.
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D = 6 spacetime dimensions. In the non-linear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
We investigate extremal electrically charged black holes in Einstein-Maxwell-dilaton theory with a cosmological constant inspired by string theory. These solutions are not static, and a timelike singularity eventually appears which is not surrounded by an event horizon. This suggests that cosmic censorship may be violated in this theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا