No Arabic abstract
This paper studies the processing principles, implementation challenges, and performance of OFDM-based radars, with particular focus on the fourth-generation Long-Term Evolution (LTE) and fifth-generation (5G) New Radio (NR) mobile networks base stations and their utilization for radar/sensing purposes. First, we address the problem stemming from the unused subcarriers within the LTE and NR transmit signal passbands, and their impact on frequency-domain radar processing. Particularly, we formulate and adopt a computationally efficient interpolation approach to mitigate the effects of such empty subcarriers in the radar processing. We evaluate the target detection and the corresponding range and velocity estimation performance through computer simulations, and show that high-quality target detection as well as high-precision range and velocity estimation can be achieved. Especially 5G NR waveforms, through their impressive channel bandwidths and configurable subcarrier spacing, are shown to provide very good radar/sensing performance. Then, a fundamental implementation challenge of transmitter-receiver (TX-RX) isolation in OFDM radars is addressed, with specific emphasis on shared-antenna cases, where the TX-RX isolation challenges are the largest. It is confirmed that from the OFDM radar processing perspective, limited TX-RX isolation is primarily a concern in detection of static targets while moving targets are inherently more robust to transmitter self-interference. Properly tailored analog/RF and digital self-interference cancellation solutions for OFDM radars are also described and implemented, and shown through RF measurements to be key technical ingredients for practical deployments, particularly from static and slowly moving targets point of view.
A novel multiple-input multiple-output (MIMO) dual-function radar communication (DFRC) system is proposed. The system transmits wideband, orthogonal frequency division multiplexing (OFDM) waveforms using a small subset of the available antennas in each channel use. The proposed system assigns most carriers to antennas in a shared fashion, thus efficiently exploiting the available communication bandwidth, and a small set of subcarriers to active antennas in an exclusive fashion (private subcarriers). A novel target estimation approach is proposed to overcome the coupling of target parameters introduced by subcarrier sharing. The obtained parameters are further refined via an iterative approach, which formulates a sparse signal recovery problem based on the data of the private subcarriers. The system is endowed with beamforming capability, via waveform precoding and antenna selection. The precoding and antenna selection matrices are optimally co-designed to meet a joint sensing-communication system performance. The sparsity of the transmit array is exploited at the communication receiver to recover the transmitted information. The use of shared subcarriers enables high communication rate, while the sparse transmit array maintains low system hardware cost. The sensing problem is formulated by taking into account frequency selective fading, and a method is proposed to estimate the channel coefficients during the sensing process. The functionality of the proposed system is demonstrated via simulations.
Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral efficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.
Industrial automation has created a high demand for private 5G networks, the deployment of which calls for an efficient and reliable solution to ensure strict compliance with the regulatory emission limits. While traditional methods for measuring outdoor interference include collecting real-world data by walking or driving, the use of unmanned aerial vehicles (UAVs) offers an attractive alternative due to their flexible mobility and adaptive altitude. As UAVs perform measurements quickly and semiautomatically, they can potentially assist in near realtime adjustments of the network configuration and fine-tuning its parameters, such as antenna settings and transmit power, as well as help improve indoor connectivity while respecting outdoor emission constraints. This article offers a firsthand tutorial on using aerial 5G emission assessment for interference management in nonpublic networks (NPNs) by reviewing the key challenges of UAV-mounted radio-scanner measurements. Particularly, we (i) outline the challenges of practical assessment of the outdoor interference originating from a local indoor 5G network while discussing regulatory and other related constraints and (ii) address practical methods and tools while summarizing the recent results of our measurement campaign. The reported proof of concept confirms that UAV-based systems represent a promising tool for capturing outdoor interference from private 5G systems.
Full-duplex (FD) transmission has already been regarded and developed as a promising method to improve the utilization efficiency of the limited spectrum resource, as transmitting and receiving are allowed to simultaneously occur on the same frequency band. Nowadays, benefiting from the recent development of intelligent reflecting surface (IRS), some unique electromagnetic (EM) functionalities, like wavefront shaping, focusing, anomalous reflection, absorption, frequency shifting, and nonreciprocity can be realized by soft-controlled elements at the IRS, showing the capability of reconfiguring the wireless propagation environment with no hardware cost and nearly zero energy consumption. To jointly exploit the virtues of both FD transmission and IRS, in this article we first introduce several EM functionalities of IRS that are profitable for FD transmission; then, some designs of FD-enabled IRS systems are proposed and discussed, followed by numerical results to demonstrate the obtained benefits. Finally, the challenges and open problems of realizing FD-enabled IRS systems are outlined and elaborated upon.
Joint communication and sensing allows the utilization of common spectral resources for communication and localization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR) (i.e., the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals, conventionally used for communication, this paper shows sub-meter precision localization is possible at millimeter wave frequencies. We derive the geometric dilution of precision of a bistatic radar configuration, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors. We develop a 5G NR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with 5G NR waveforms. The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average, the bistatic configuration can achieve a location accuracy of 10.0 cm over a bistatic range of 25 m, which can be further improved by deploying a multistatic radar configuration.