Descriptors for Electrolyte-Renormalized Oxidative Stability of Solvents in Lithium-ion Batteries


Abstract in English

Electrolyte stability against oxidation is one of the important factors limiting the development of high energy density batteries. HOMO level of solvent molecules has been successfully used for understanding trends in their oxidative stability but assumes a non-interacting environment. However, solvent HOMO levels are renormalized due to molecules in their solvation shells. In this work, we first demonstrate an inexpensive and accurate method to determine the HOMO level of solvent followed by simple descriptors for renormalization of HOMO level due to different electrolyte components. The descriptors are based on Gutmann Donor and Acceptor numbers of solvent and other components. The method uses fast GGA-level DFT calculations compared to previously used expensive, experimental data dependent methods. This method can be used to screen for unexplored stable solvents among the large number of known organic compounds to design novel high voltage stable electrolytes.

Download