Do you want to publish a course? Click here

Microwave quantum illumination using a digital receiver

148   0   0.0 ( 0 )
 Added by Shabir Barzanjeh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum illumination is a powerful sensing technique that employs entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. The promised advantage over classical strategies is particularly evident at low signal powers, a feature which could make the protocol an ideal prototype for non-invasive biomedical scanning or low-power short-range radar. In this work we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields using a Josephson parametric converter to illuminate a room-temperature object at a distance of 1 meter in a free-space detection setup. We implement a digital phase conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.



rate research

Read More

A quantum receiver is an essential element of quantum illumination (QI) which outperforms its classical counterpart, called classical-illumination (CI). However, there are only few proposals for realizable quantum receiver, which exploits nonlinear effects leading to increasing the complexity of receiver setups. To compensate this, in this article, we design a quantum receiver with linear optical elements for Gaussian QI. Rather than exploiting nonlinear effect, our receiver consists of a 50:50 beam splitter and homodyne detection. Using double homodyne detection after the 50:50 beam splitter, we analyze the performance of the QI in different regimes of target reflectivity, source power, and noise level. We show that our receiver has better signal-to-noise ratio and more robust against noise than the existing simple-structured receivers.
425 - R. Barends , L. Lamata , J. Kelly 2015
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
Classical microwave circuit theory is incapable of representing some phenomena at the quantum level. To include quantum statistical effects when treating microwave networks, various theoretical treatments can be employed such as quantum input-output network (QION) theory and SLH theory. However, these require a reformulation of classical microwave theory. To make these topics comprehensible to an electrical engineer, we demonstrate some underpinnings of microwave quantum optics in terms of microwave engineering. For instance, we equate traveling-wave phasors in a transmission line ($V_0^+$) directly to bosonic field operators. Furthermore, we extend QION to include a state-space representation and a transfer function for a single port quantum network. This serves as a case study to highlight how microwave methodologies can be applied in open quantum systems. Although the same conclusion could be found from a full SLH theory treatment, our method was derived directly from first principles of QION.
Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot (DQD) charge qubit strongly coupled to a high-impedance SQUID array resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation and Hahn-echo measurements and find significantly reduced decoherence rates down to $gamma_2/2pisim 3,rm{MHz}$ corresponding to coherence times of up to $T_2 sim 50 , rm{ns}$ for charge states in gate defined quantum dot qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا