Do you want to publish a course? Click here

High-$T_c$ Iron-phosphide Superconductivity Enhanced by Reemergent Antiferromagnetic Spin Fluctuations in (Sr$_4$Sc$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_{x}$)$_2$ probed by NMR

62   0   0.0 ( 0 )
 Added by Hidekazu Mukuda
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a systematic NMR study on [Sr$_4$Sc$_2$O$_6$]Fe$_2$(As$_{1-x}$P$_x$)$_2$, for which the local lattice parameters of the iron-pnictogen (Fe$Pn$) layer are similar to those of the series LaFe(As$_{1-x}$P$_{x}$)O, which exhibit two segregated antiferromagnetic (AFM) order phases, AFM1 at $x$=0-0.2 and AFM2 at $x$=0.4-0.7. Our results revealed that the parent AFM1 phase at $x$=0 disappears at $x$=0.3-0.4, corresponding to a pnictogen height ($h_{pn}$) from the Fe-plane of 1.3-1.32 AA, which is similar to that of LaFe(As$_{1-x}$P$_{x}$)O and various parent Fe-pnictides. By contrast, the AFM2 order reported for LaFe(As$_{0.4}$P$_{0.6}$)O does not appear at $xsim$0.8, although the local lattice parameters of the Fe$Pn$ layer and the microscopic electronic states are quite similar. Despite the absence of the {it static} AFM2 order, reemergent {it dynamical} AFM spin fluctuations were observed at approximately $xsim$0.8, which can be attributed to the instability of the AFM2 phase. We suggest this re-enhancement of AFM spin fluctuations to play a significant role in enhancing the $T_c$ to 17 K for $x$=0.8-1. Finally, we discuss the universality and diversity of the complicated magnetic ground states from a microscopic point of view, including the difference in the origins of the AFM1 and AFM2 phases, and their relations with the high superconducting transitions in Fe-pnictides.



rate research

Read More

121 - S.-F. Wu , P. Richard , H. Ding 2016
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal for all studied doping range. In the superconducting state, we observe two distinct superconducting pair breaking peaks corresponding to one large and one small superconducting gaps. In addition, we detect a collective mode below the superconducting transition in the B$_{2g}$ channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the under-doped regime, we detect a re-entrance transition below which the spectral background changes and the collective mode vanishes.
We report a detailed study of the electrical transport properties of single crystals of Pr$_4$Fe$_2$As$_2$Te$_{1-x}$O$_4$, a recently discovered iron-based superconductor. Resistivity, Hall effect and magnetoresistance are measured in a broad temperature range revealing the role of electrons as dominant charge carriers. The significant temperature dependence of the Hall coefficient and the violation of Kohlers law indicate multiband effects in this compound. The upper critical field and the magnetic anisotropy are investigated in fields up to 16 T, applied parallel and perpendicular to the crystallographic c-axis. Hydrostatic pressure up to 2 GPa linearly increases the critical temperature and the resistivity residual ratio. A simple two-band model is used to describe the transport and magnetic properties of Pr$_4$Fe$_2$As$_2$Te$_{1-x}$O$_4$. The model can successfully explain the strongly temperature dependent negative Hall coefficient and the high magnetic anisotropy assuming that the mobility of electrons is higher than that of holes.
We report on the phase diagram of antiferromagnetism (AFM) and superconductivity (SC) in three-layered Ba_2Ca_2Cu_3O_6(F,O)_2 by means of Cu-NMR measurements. It is demonstrated that AFM and SC uniformly coexist in three-layered compounds as well as in four- and five-layered ones. The critical hole density p_c for the long range AFM order is determined as p_c ~ 0.075, which is larger than p_c ~ 0.02 and 0.055 in single- and bi-layered compounds, and smaller than p_c ~ 0.08-0.09 and 0.10-0.11 in four- and five-layered compounds, respectively. This variation of p_c is attributed to the magnetic interlayer coupling which becomes stronger as the stacking number of CuO_2 layers increases; that is, the uniform coexistence of AFM and SC is a universal phenomenon in underdoped regions when a magnetic interlayer coupling is strong enough to stabilize an AFM ordering. In addition, we highlight an unusual pseudogap behavior in three-layered compounds -- the gap behavior in low-energy magnetic excitations collapses in an underdoped region where the ground state is the AFM-SC mixed phase.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.007(1) {AA}, and $Z$ = 2), which contains double Fe$_2$As$_2$ conducting layers separated by insulating Ca$_2$F$_2$ layers. Our measurements of electrical resistivity, dc magnetic susceptibility and heat capacity demonstrate bulk superconductivity at 33 K in KCa$_2$Fe$_4$As$_4$F$_2$.
Superfluid density ($n_s$) in the mixed state of an iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ is determined by muon spin rotation for a sample with optimal doping ($x=0.4$). The temperature dependence of $n_s$ is perfectly reproduced by the conventional BCS model for s-wave paring, where the order parameter can be either a single-gap with $Delta=8.35(6)$ meV [$2Delta/k_BT_c=5.09(4)$], or double-gap structure with $Delta_1=12$ meV (fixed) [$2Delta_1/k_BT_c=7.3$] and $Delta_2=6.8(3)$ meV [$2Delta_2/k_BT_c=4.1(2)$]. The latter is consistent with the recent result of angle-resolved photo-emssion spectroscopy. The large gap parameters ($2Delta/k_BT_c$) indicate extremely strong coupling of carriers to bosons that mediate the Cooper pairing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا