Do you want to publish a course? Click here

Signatures of magnetic activity: On the relation between stellar properties and p-mode frequency variations

219   0   0.0 ( 0 )
 Added by \\^Angela Santos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the Sun, the properties of acoustic modes are sensitive to changes in the magnetic activity. In particular, mode frequencies are observed to increase with increasing activity level. Thanks to CoRoT and Kepler, such variations have been found in other solar-type stars and encode information on the activity-related changes in their interiors. Thus, the unprecedented long-term Kepler photometric observations provide a unique opportunity to study stellar activity through asteroseismology. The goal of this work is to investigate the dependencies of the observed mode frequency variations on the stellar parameters and whether those are consistent with an activity-related origin. We select the solar-type oscillators with highest signal-to-noise ratio, in total 75 targets. Using the temporal frequency variations determined in Santos et al. (2018), we study the relation between those variations and the fundamental stellar properties. We also compare the observed frequency shifts with chromospheric and photometric activity indexes, which are only available for a subset of the sample. We find that frequency shifts increase with increasing chromospheric activity, which is consistent with an activity-related origin of the observed frequency shifts. Frequency shifts are also found to increase with effective temperature, which is in agreement with the theoretical predictions for the activity-related frequency shifts by Metcalfe et al. (2007). Frequency shifts are largest for fast rotating and young stars, which is consistent with those being more active than slower rotators and older stars. Finally, we find evidence for frequency shifts increasing with stellar metallicity.

rate research

Read More

The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence with radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 muHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main-sequence solar-like stars, the F-star HD49933, and the young 1-Gyr-old solar analog KIC10644253, although with different amplitudes of the shifts of about 2 muHz and 0.5 muHz respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with already known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l=0 and l=1 modes individually. Given the quality of the data, the results could indicate that a different physical source of perturbation than in the Sun is dominating in this sample of solar-like stars.
58 - C. Regulo , R. A. Garcia , 2016
Aims. We aim studying the use of cross-correlation techniques to infer the frequency shifts induced by changing magnetic fields in the p-mode frequencies and provide precise estimation of the error bars. Methods. This technique and the calculation of the associated errors is first tested and validated on the Sun where the p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546 observed by Kepler. Results. We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three analyzed stars we confirm the presence of a magnetic activity cycle with this methodology in HD 49933 and we unveil seismic signature of on going magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.
65 - S.V.Jeffers 2017
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridanis large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridanis large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridanis large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars.
66 - S.V.Jeffers 2018
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper we aim to monitor the evolution of $tau$ Boos large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with $tau$ Boos 120 day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that $tau$ Boo has a very fast magnetic cycle of only 240 days. At activity maximum $tau$ Boos large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished.
Observations of stellar activity cycles provide an opportunity to study magnetic dynamos under many different physical conditions. Space-based asteroseismology missions will soon yield useful constraints on the interior conditions that nurture such magnetic cycles, and will be sensitive enough to detect shifts in the oscillation frequencies due to the magnetic variations. We derive a method for predicting these shifts from changes in the Mg II activity index by scaling from solar data. We demonstrate this technique on the solar-type subgiant beta Hyi, using archival International Ultraviolet Explorer spectra and two epochs of ground-based asteroseismic observations. We find qualitative evidence of the expected frequency shifts and predict the optimal timing for future asteroseismic observations of this star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا