Byzantine Approximate Agreement on Graphs


Abstract in English

Consider a distributed system with $n$ processors out of which $f$ can be Byzantine faulty. In the approximate agreement task, each processor $i$ receives an input value $x_i$ and has to decide on an output value $y_i$ such that - the output values are in the convex hull of the non-faulty processors input values, - the output values are within distance $d$ of each other. Classically, the values are assumed to be from an $m$-dimensional Euclidean space, where $m ge 1$. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph $G$ and the goal is to output vertices that are within distance $d$ of each other in $G$, but still remain in the graph-induced convex hull of the input values. For $d=0$, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any $d ge 1$, we show that the task is solvable in asynchronous systems when $G$ is chordal and $n > (omega+1)f$, where $omega$ is the clique number of~$G$. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures.

Download