Probing the Origin of Stellar Flares on M dwarfs Using TESS Data Sectors 1-3


Abstract in English

Detailed studies of the Sun have shown that sunspots and solar flares are closely correlated. Photometric data from Kepler/K2 has allowed similar studies to be carried out on other stars. Here, we utilise TESS photometric 2-min cadence of 167 low mass stars from Sectors 1 - 3 to investigate the relationship between starspots and stellar flares. From our sample, 90 percent show clear rotational modulation likely due to the presence of a large, dominant starspot and we use this to determine a rotational period for each star. Additionally, each low mass star shows one or more flares in its lightcurve and using Gaia DR2 parallaxes and SkyMapper magnitudes we can estimate the energy of the flares in the TESS band-pass. Overall, we have 1834 flares from the 167 low mass stars with energies from $6.0times 10^{29}$ - $2.4times 10^{35}$~erg. We find none of the stars in our sample show any preference for rotational phase suggesting the lack of a correlation between the large, dominant star spot and flare number. We discuss this finding in greater detail and present further scenarios to account for the origin of flares on these low mass stars.

Download