No Arabic abstract
Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transient states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.
The insulator-to-metal transition (IMT) of the simple binary compound of vanadium dioxide VO$_2$ at $sim 340$ K has been puzzling since its discovery more than five decades ago. A wide variety of photon and electron probes have been applied in search of a satisfactory microscopic mechanistic explanation. However, many of the conclusions drawn have implicitly assumed a {em homogeneous} material response. Here, we reveal inherently {em inhomogeneous} behavior in the study of the dynamics of individual VO$_2$ micro-crystals using a combination of femtosecond pump-probe microscopy with nano-IR imaging. The time scales of the photoinduced bandgap reorganization in the ultrafast IMT vary from $simeq 40 pm 8$ fs, i.e., shorter than a suggested phonon bottleneck, to $sim 200pm20$ fs, with an average value of $80 pm 25$ fs, similar to results from previous studies on polycrystalline thin films. The variation is uncorrelated with crystal size, orientation, transition temperature, and initial insulating phase. This together with details of the nano-domain behavior during the thermally-induced IMT suggests a significant sensitivity to local variations in, e.g., doping, defects, and strain of the microcrystals. The combination of results points to an electronic mechanism dominating the photoinduced IMT in VO$_2$, but also highlights the difficulty of deducing mechanistic information where the intrinsic response in correlated matter may not yet have been reached.
We utilize near-infrared pump and mid-infrared probe spectroscopy to investigate the ultrafast electronic response of pressurized VO$_2$. Distinct pump-probe signals and a pumping threshold behavior are observed even in the pressure-induced metallic state showing a noticeable amount of localized electronic states. Our results are consistent with a scenario of a bandwidth-controlled Mott-Hubbard transition.
Ultrafast dynamics across the photoinduced three-dimensional Peierls-like insulator-metal (IM) transition in CuIr$_{2}$S$_{4}$ was investigated by means of the all-optical ultrafast multi-pulse time-resolved spectroscopy. The structural coherence of the low-$T$ broken symmetry state is strongly suppressed on a sub-picosecond timescale above a threshold excitation fluence of $F_{mathrm{c}}approx3$ mJ/cm$^{2}$ (at 1.55-eV photon energy) resulting in a structurally inhomogeneous transient state which persists for several-tens of picoseconds before reverting to the original low-$T$ state. The electronic order shows a transient gap filling at a significantly lower fluence threshold of $sim0.6$~mJ/cm$^{2}$. The data suggest that the photoinduced-transition structural dynamics to the high-$T$ metallic phase is governed by first-order-transition nucleation kinetics that prevents the complete structural transition into the high-$T$ phase even at excitation fluences significantly larger than $F_{mathrm{c}}$. In contrast, the dynamically-decoupled electronic order is suppressed rather independently due to a photoinduced Mott transition.
The spinel-structure CuIr$_{2}$S$_{4}$ compound displays a rather unusual orbitally-driven three-dimensional Peierls-like insulator-metal transition. The low-T symmetry-broken insulating state is especially interesting due to the existence of a metastable irradiation-induced disordered weakly conducting state. Here we study intense femtosecond optical pulse irradiation effects by means of the all-optical ultrafast multi-pulse time-resolved spectroscopy. We show that the structural coherence of the low-T broken symmetry state is strongly suppressed on a sub-picosecond timescale above a threshold excitation fluence resulting in a structurally inhomogeneous transient state which persists for several-tens of picoseconds before reverting to the low-T disordered weakly conducting state. The electronic order shows a transient gap filling at a significantly lower fluence threshold. The data suggest that the photoinduced-transition dynamics to the high-T metallic phase is governed by first-order-transition nucleation kinetics that prevents the complete ultrafast structural transition even when the absorbed energy significantly exceeds the equilibrium enthalpy difference to the high-T metallic phase. In contrast, the dynamically-decoupled electronic order is transiently suppressed on a sub-picosecond timescale rather independently due to a photoinduced Mott transition.
We investigate ultra-fast coherent quantum dynamics of undoped $text{BaBiO}_{3}$ driven by a strong laser pulse. Our calculations demonstrate that in a wide range of radiation frequencies and intensities the system undergoes a transient change from the insulating to the metallic state, where the charge density wave and the corresponding energy spectrum gap vanish. The transition takes place on the ultra-fast time scale of tens femtoseconds, comparable to the period of the corresponding lattice vibrations. The dynamics are determined by a complex interplay of the particle-hole excitation over the gap and of the tunnelling through it, giving rise to the highly non-trivial time evolution which comprises high harmonics and reveals periodic reappearance of the gap. The time evolution is obtained by solving the dynamical mean-field theory equations with the realistic parameters for the system and radiation. Results are summarized in the phase diagram, helpful for a possible experimental setup to achieve a dynamical control over the conduction state of this and other materials with the similarly strong electron-phonon interaction.