No Arabic abstract
We say that a subset $X$ quasi-isometrically boundedly generates a finitely generated group $Gamma$ if each element $gamma$ of a finite-index subgroup of $Gamma$ can be written as a product $gamma = x_1 x_2 cdots x_r$ of a bounded number of elements of $X$, such that the word length of each $x_i$ is bounded by a constant times the word length of $gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that ${rm SL}(n,{mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural ${rm SL}(2,{mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every $S$-arithmetic subgroup of an isotropic, almost-simple ${mathbb Q}$-group is quasi-isometrically boundedly generated by standard ${mathbb Q}$-rank-1 subgroups.
We describe a family of finitely presented groups which are quasi-isometric but not bilipschitz equivalent. The first such examples were described by the first author and are the lamplighter groups $F wr mathbb{Z}$ where $F$ is a finite group; these groups are finitely generated but not finitely presented. The examples presented in this paper are higher rank generalizations of these lamplighter groups and include groups that are of type $F_n$ for any $n$.
We use basic tools of descriptive set theory to prove that a closed set $mathcal S$ of marked groups has $2^{aleph_0}$ quasi-isometry classes provided every non-empty open subset of $mathcal S$ contains at least two non-quasi-isometric groups. It follows that every perfect set of marked groups having a dense subset of finitely presented groups contains $2^{aleph_0}$ quasi-isometry classes. These results account for most known constructions of continuous families of non-quasi-isometric finitely generated groups. They can also be used to prove the existence of $2^{aleph_0}$ quasi-isometry classes of finitely generated groups having interesting algebraic, geometric, or model-theoretic properties.
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$ which surjects onto $mathrm{Sp}_{2g}(mathbb{Z}/ellmathbb{Z})$ must in fact equal all of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$. The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois representations associated to abelian varieties.
Using a probabilistic argument we show that the second bounded cohomology of an acylindrically hyperbolic group $G$ (e.g., a non-elementary hyperbolic or relatively hyperbolic group, non-exceptional mapping class group, ${rm Out}(F_n)$, dots) embeds via the natural restriction maps into the inverse limit of the second bounded cohomologies of its virtually free subgroups, and in fact even into the inverse limit of the second bounded cohomologies of its hyperbolically embedded virtually free subgroups. This result is new and non-trivial even in the case where $G$ is a (non-free) hyperbolic group. The corresponding statement fails in general for the third bounded cohomology, even for surface groups.
We show that one can define and effectively compute Stallings graphs for quasi-convex subgroups of automatic groups (textit{e.g.} hyperbolic groups or right-angled Artin groups). These Stallings graphs are finite labeled graphs, which are canonically associated with the corresponding subgroups. We show that this notion of Stallings graphs allows a unified approach to many algorithmic problems: some which had already been solved like the generalized membership problem or the computation of a quasi-convexity constant (Kapovich, 1996); and others such as the computation of intersections, the conjugacy or the almost malnormality problems. Our results extend earlier algorithmic results for the more restricted class of virtually free groups. We also extend our construction to relatively quasi-convex subgroups of relatively hyperbolic groups, under certain additional conditions.