A new functional RG flow: regulator-sourced 2PI versus average 1PI


Abstract in English

We derive the renormalization group evolution of the quartic scalar theory with spontaneous symmetry breaking from an alternative flow equation, obtained within the externally sourced two-particle irreducible framework due to Garbrecht and Millington. In order to make a straightforward comparison with the evolution from the standard Wetterich-Morris-Ellwanger equation, we employ the Litim regulator, work to lowest order in the derivative expansion and neglect anomalous scaling. By this means, we illustrate the leading differences between analytic expressions for the resulting threshold and (non-perturbative) beta functions. In four dimensions, we find that the positions of the potential minima and the cosmological constant evolve more rapidly with scale compared to the standard approach, whereas the quartic coupling evolves more slowly, albeit by a small amount. These differences may have implications for the asymptotic safety programme, as well as our understanding of the non-perturbative scale evolution of the Standard Model Higgs sector.

Download