No Arabic abstract
We have recently initiated the first spectroscopic dust reverberation programme on active galactic nuclei (AGN) in the near-infrared. Spectroscopy enables measurement of dust properties, such as flux, temperature and covering factor, with higher precision than photometry. In particular, it enables measurement of both luminosity-based dust radii and dust response times. Here we report results from a one-year campaign on NGC 5548. The hot dust responds to changes in the irradiating flux with a lag time of ~70 light-days, similar to what was previously found in photometric reverberation campaigns. The mean and rms spectra are similar, implying that the same dust component dominates both the emission and the variations. The dust lag time is consistent with the luminosity-based dust radius only if we assume a wavelength-independent dust emissivity-law, i.e. a blackbody, which is appropriate for grains of large sizes (of a few microns). For such grains the dust temperature is ~1450 K. Therefore, silicate grains have most likely evaporated and carbon is the main chemical component. But the hot dust is not close to its sublimation temperature, contrary to popular belief. This is further supported by our observation of temperature variations largely consistent with a heating/cooling process. Therefore, the inner dust-free region is enlarged and the dusty torus rather a dusty wall, whose inner radius is expected to be luminosity-invariant. The dust-destruction mechanism that enlarges the dust-free region seems to partly affect also the dusty region. We observe a cyclical decrease in dust mass with implied dust reformation times of ~5-6 months.
The central engines of Active Galactic Nuclei (AGNs) are powered by accreting supermassive black holes, and while AGNs are known to play an important role in galaxy evolution, the key physical processes occur on scales that are too small to be resolved spatially (aside from a few exceptional cases). Reverberation mapping is a powerful technique that overcomes this limitation by using echoes of light to determine the geometry and kinematics of the central regions. Variable ionizing radiation from close to the black hole drives correlated variability in surrounding gas/dust, but with a time delay due to the light travel time between the regions, allowing reverberation mapping to effectively replace spatial resolution with time resolution. Reverberation mapping is used to measure black hole masses and to probe the innermost X-ray emitting region, the UV/optical accretion disk, the broad emission line region and the dusty torus. In this article we provide an overview of the technique and its varied applications.
We present HI 21 cm spectroscopy from the GBT for the host galaxies of 31 nearby AGNs with direct M$_{textrm{BH}}$ measurements from reverberation mapping. These are the first published HI detections for 12 galaxies, and the spectral quality is generally an improvement over archival data for the remainder of the sample. We present measurements of emission-line fluxes, velocity widths, and recessional velocities from which we derive HI mass, total gas mass, and redshifts. Combining M$_{textrm{GAS}}$ with constraints on M$_{textrm{STARS}}$ allows exploration of the baryonic content of these galaxies. We find a typical M$_{textrm{GAS}}$/M$_{textrm{STARS}}$ fraction of 10%, with a few reaching $sim$30-50%. We also examined several relationships between M$_{textrm{STARS}}$, M$_{textrm{GAS}}$, M$_{textrm{BH}}$, baryonic mass, and morphological type. We find a weak preference for galaxies with larger M$_{textrm{GAS}}$ to host more massive black holes. We also find gas-to-stellar fractions to weakly correlate with later types in unbarred spirals, with an approximately constant fraction for barred spirals. Consistent with previous studies, we find declining M$_{textrm{GAS}}$/M$_{textrm{STARS}}$ with increasing M$_{textrm{STARS}}$, with a slope suggesting the gas reservoirs have been replenished. Finally, we find a clear relationship for M$_{textrm{BH}}$-M$_{textrm{BARY}}$ with a similar slope as M$_{textrm{BH}}$-M$_{textrm{STARS}}$ reported by Bentz & Manne-Nicholas (2018). The dwarf Seyfert NGC 4395 appears to follow this relationship as well, even though it has a significantly higher gas fraction and smaller M$_{textrm{BH}}$ than the remainder of our sample.
We investigate the correlation between infrared (JHKL) and optical (B) fluxes of the variable nucleus of the Seyfert galaxy NGC 4151 using partially published data for the last 6 years (2008-2013.). Here we are using the same data as in Oknyansky et al. (2014), but include also optical (B) data from Guo et al. We find that the lag of flux in all the infrared bands is the same, 40 +- 6 days, to within the measurement accuracy. Variability in the J and K bands is not quite simultaneous, perhaps due to the differing contributions of the accretion disk in these bands. The lag found for the K band compared with the B band is not significantly different from earlier values obtained for the period 2000-2007. However, finding approximately the same lags in all IR bands for 2008-2013 differs from previous results at earlier epochs when the lag increased with increasing wavelength. Examples of almost the same lag in different IR bands are known for some other active nuclei. In the case of NGC 4151 it appears that the relative lags between the IR bands may be different in different years. The available data, unfortunately, do not allow us to investigate a possible change in the lags during the test interval. We discuss our results in the framework of the standard model where the variable infrared radiation is mainly due to thermal re-emission from the part of the dusty torus closest to the central source. There is also a contribution of some IR emission from the accretion disk, and this contribution increases with decreasing wavelength. Some cosmological applications of obtained results are discussed.
Using different kinds of velocity tracers derived from the broad H$beta$ profile (in the mean or rms spectrum) and the corresponding virial factors $f$, the central supermassive black hole (SMBH) masses ($M_{rm BH}$) are calculated for a compiled sample of 120 reverberation-mapped (RM) AGNs. For its subsample of RM AGNs with measured stellar velocity dispersion ($sigma_{rm ast}$), the multivariate linear regression technique is used to calibrate the mean value $f$, as well as the variable FWHM-based $f$. It is found that, whether excluding the pseudo-bulges or not, $M_{rm BH}$ from the H$beta$ line dispersion in the mean spectrum ($sigma_{rm Hbeta,mean}$) has the smallest offset rms with respect to the $M_{rm BH}-sigma_{ast}$ relation. For the total sample excluding SDSS-RM AGNs, with respect to $M_{rm BH}$ from $sigma_{rm ast}$ or that from the H$beta$ line dispersion in the rms spectrum ($sigma_{rm Hbeta,rms}$), it is found that we can obtain $M_{rm BH}$ from the $sigma_{rm Hbeta,mean}$ with the smallest offset rms of 0.38 dex or 0.23 dex, respectively. It implies that, with respect to the H$beta$ FWHM, we prefer $sigma_{rm Hbeta,mean}$ to calculate $M_{rm BH}$ from the single-epoch spectrum. Using the FWHM-based $f$, we can improve $M_{rm BH}$ calculation from FWHM(H$beta$) and the mean $f$, with a decreased offset rms from 0.52 dex to 0.39 dex with respect to $M_{rm BH}$ from $sigma_{rm ast}$ for the subsample of 36 AGNs with $sigma_{rm ast}$. The value of 0.39 dex is almost the same as that from $sigma_{rm Hbeta,mean}$ and the mean $f$.
We studied the physical parameters of a sample comprising of all Spitzer/IRS public spectra of Seyfert galaxies in the mid-infrared (5.2-38$mu$m range) under the active galactic nuclei (AGN) unified model. We compare the observed spectra with $sim10^6$ CLUMPY model spectral energy distributions, which consider a torus composed of dusty clouds. We find a slight difference in the distribution of line-of-sight inclination angle, $i$, requiring larger angles for Seyfert 2 (Sy2) and a broader distribution for Seyfert 1 (Sy1). We found small differences in the torus angular width, $sigma$, indicating that Sy1 may host a slightly narrower torus than Sy2. The torus thickness, together with the bolometric luminosities derived, suggest a very compact torus up to $sim$6 pc from the central AGN. The number of clouds along the equatorial plane, $N$, as well the index of the radial profile, $q$, are nearly the same for both types. These results imply that the torus cloud distribution is nearly the same for type 1 and type 2 objects. The torus mass is almost the same for both types of activity, with values in the range of $M_{tor}sim$10$^{4}-$10$^{7}rm M_{odot}$. The main difference appears to be related to the clouds intrinsic properties: type 2 sources present higher optical depths $tau_V$. The results presented here reinforce the suggestion that the classification of a galaxy may depend also on the intrinsic properties of the torus clouds rather than simply on their inclination. This is in contradiction with the simple geometric idea of the unification model.