Do you want to publish a course? Click here

On the Relationship Between Coupling and Refactoring: An Empirical Viewpoint

74   0   0.0 ( 0 )
 Added by Davide Taibi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

[Background] Refactoring has matured over the past twenty years to become part of a developers toolkit. However, many fundamental research questions still remain largely unexplored. [Aim] The goal of this paper is to investigate the highest and lowest quartile of refactoring-based data using two coupling metrics - the Coupling between Objects metric and the more recent Conceptual Coupling between Classes metric to answer this question. Can refactoring trends and patterns be identified based on the level of class coupling? [Method] In this paper, we analyze over six thousand refactoring operations drawn from releases of three open-source systems to address one such question. [Results] Results showed no meaningful difference in the types of refactoring applied across either lower or upper quartile of coupling for both metrics; refactorings usually associated with coupling removal were actually more numerous in the lower quartile in some cases. A lack of inheritance-related refactorings across all systems was also noted. [Conclusions] The emerging message (and a perplexing one) is that developers seem to be largely indifferent to classes with high coupling when it comes to refactoring types - they treat classes with relatively low coupling in almost the same way.



rate research

Read More

In this paper, we present a tertiary systematic literature review of previous surveys, secondary systematic literature reviews, and systematic mappings. We identify the main observations (what we know) and challenges (what we do not know) on code smells and refactoring. We show that code smells and refactoring have a strong relationship with quality attributes, i.e., with understandability, maintainability, testability, complexity, functionality, and reusability. We argue that code smells and refactoring could be considered as the two faces of a same coin. Besides, we identify how refactoring affects quality attributes, more than code smells. We also discuss the implications of this work for practitioners, researchers, and instructors. We identify 13 open issues that could guide future research work. Thus, we want to highlight the gap between code smells and refactoring in the current state of software-engineering research. We wish that this work could help the software-engineering research community in collaborating on future work on code smells and refactoring.
GraphQL is a query language for APIs and a runtime to execute queries. Using GraphQL queries, clients define precisely what data they wish to retrieve or mutate on a server, leading to fewer round trips and reduced response sizes. Although interest in GraphQL is on the rise, with increasing adoption at major organizations, little is known about what GraphQL interfaces look like in practice. This lack of knowledge makes it hard for providers to understand what practices promote idiomatic, easy-to-use APIs, and what pitfalls to avoid. To address this gap, we study the design of GraphQL interfaces in practice by analyzing their schemas - the descriptions of their exposed data types and the possible operations on the underlying data. We base our study on two novel corpuses of GraphQL schemas, one of 16 commercial GraphQL schemas and the other of 8,399 GraphQL schemas mined from GitHub projects. We make both corpuses available to other researchers. Using these corpuses, we characterize the size of schemas and their use of GraphQL features and assess the use of both prescribed and organic naming conventions. We also report that a majority of APIs are susceptible to denial of service through complex queries, posing real security risks previously discussed only in theory. We also assess ways in which GraphQL APIs attempt to address these concerns.
In this research, we provide a comprehensive empirical summary of the Python Package Repository, PyPI, including both package metadata and source code covering 178,592 packages, 1,745,744 releases, 76,997 contributors, and 156,816,750 import statements. We provide counts and trends for packages, releases, dependencies, category classifications, licenses, and package imports, as well as authors, maintainers, and organizations. As one of the largest and oldest software repositories as of publication, PyPI provides insight not just into the Python ecosystem today, but also trends in software development and licensing more broadly over time. Within PyPI, we find that the growth of the repository has been robust under all measures, with a compound annual growth rate of 47% for active packages, 39% for new authors, and 61% for new import statements over the last 15 years. As with many similar social systems, we find a number of highly right-skewed distributions, including the distribution of releases per package, packages and releases per author, imports per package, and size per package and release. However, we also find that most packages are contributed by single individuals, not multiple individuals or organizations. The data, methods, and calculations herein provide an anchor for public discourse on PyPI and serve as a foundation for future research on the Python software ecosystem.
Low-code software development (LCSD) is an emerging paradigm that combines minimal source code with interactive graphical interfaces to promote rapid application development. LCSD aims to democratize application development to software practitioners with diverse backgrounds. Given that LCSD is relatively a new paradigm, it is vital to learn about the challenges developers face during their adoption of LCSD platforms. The online developer forum, Stack Overflow (SO), is popular among software developers to ask for solutions to their technical problems. We observe a growing body of posts in SO with discussions of LCSD platforms. In this paper, we present an empirical study of around 5K SO posts (questions + accepted answers) that contain discussions of nine popular LCSD platforms. We apply topic modeling on the posts to determine the types of topics discussed. We find 13 topics related to LCSD in SO. The 13 topics are grouped into four categories: Customization, Platform Adoption, Database Management, and Third-Party Integration. More than 40% of the questions are about customization, i.e., developers frequently face challenges with customizing user interfaces or services offered by LCSD platforms. The topic Dynamic Event Handling under the Customization category is the most popular (in terms of average view counts per question of the topic) as well as the most difficult. It means that developers frequently search for customization solutions such as how to attach dynamic events to a form in low-code UI, yet most (75.9%) of their questions remain without an accepted answer. We manually label 900 questions from the posts to determine the prevalence of the topics challenges across LCSD phases. We find that most of the questions are related to the development phase, and low-code developers also face challenges with automated testing.
Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation of software development histories can be leveraged to learn how to fix common programming bugs. To explore such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and generate candidate patches in a split second.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا