No Arabic abstract
In applications such as molecule design or drug discovery, it is desirable to have an algorithm which recommends new candidate molecules based on the results of past tests. These molecules first need to be synthesized and then tested for objective properties. We describe ChemBO, a Bayesian optimization framework for generating and optimizing organic molecules for desired molecular properties. While most existing data-driven methods for this problem do not account for sample efficiency or fail to enforce realistic constraints on synthesizability, our approach explores the synthesis graph in a sample-efficient way and produces synthesizable candidates. We implement ChemBO as a Gaussian process model and explore existing molecular kernels for it. Moreover, we propose a novel optimal-transport based distance and kernel that accounts for graphical information explicitly. In our experiments, we demonstrate the efficacy of the proposed approach on several molecular optimization problems.
Bayesian Optimization is a sample-efficient black-box optimization procedure that is typically applied to problems with a small number of independent objectives. However, in practice we often wish to optimize objectives defined over many correlated outcomes (or ``tasks). For example, scientists may want to optimize the coverage of a cell tower network across a dense grid of locations. Similarly, engineers may seek to balance the performance of a robot across dozens of different environments via constrained or robust optimization. However, the Gaussian Process (GP) models typically used as probabilistic surrogates for multi-task Bayesian Optimization scale poorly with the number of outcomes, greatly limiting applicability. We devise an efficient technique for exact multi-task GP sampling that combines exploiting Kronecker structure in the covariance matrices with Matherons identity, allowing us to perform Bayesian Optimization using exact multi-task GP models with tens of thousands of correlated outputs. In doing so, we achieve substantial improvements in sample efficiency compared to existing approaches that only model aggregate functions of the outcomes. We demonstrate how this unlocks a new class of applications for Bayesian Optimization across a range of tasks in science and engineering, including optimizing interference patterns of an optical interferometer with more than 65,000 outputs.
Scarce data is a major challenge to scaling robot learning to truly complex tasks, as we need to generalize locally learned policies over different task contexts. Contextual policy search offers data-efficient learning and generalization by explicitly conditioning the policy on a parametric context space. In this paper, we further structure the contextual policy representation. We propose to factor contexts into two components: target contexts that describe the task objectives, e.g. target position for throwing a ball; and environment contexts that characterize the environment, e.g. initial position or mass of the ball. Our key observation is that experience can be directly generalized over target contexts. We show that this can be easily exploited in contextual policy search algorithms. In particular, we apply factorization to a Bayesian optimization approach to contextual policy search both in sampling-based and active learning settings. Our simulation results show faster learning and better generalization in various robotic domains. See our supplementary video: https://youtu.be/MNTbBAOufDY.
This paper presents the private-outsourced-Gaussian process-upper confidence bound (PO-GP-UCB) algorithm, which is the first algorithm for privacy-preserving Bayesian optimization (BO) in the outsourced setting with a provable performance guarantee. We consider the outsourced setting where the entity holding the dataset and the entity performing BO are represented by different parties, and the dataset cannot be released non-privately. For example, a hospital holds a dataset of sensitive medical records and outsources the BO task on this dataset to an industrial AI company. The key idea of our approach is to make the BO performance of our algorithm similar to that of non-private GP-UCB run using the original dataset, which is achieved by using a random projection-based transformation that preserves both privacy and the pairwise distances between inputs. Our main theoretical contribution is to show that a regret bound similar to that of the standard GP-UCB algorithm can be established for our PO-GP-UCB algorithm. We empirically evaluate the performance of our PO-GP-UCB algorithm with synthetic and real-world datasets.
Methods for designing organic materials with desired properties have high potential impact across fields such as medicine, renewable energy, petrochemical engineering, and agriculture. However, using generative modeling to design substances with desired properties is difficult because candidate compounds must satisfy multiple constraints, including synthetic accessibility and other metrics that are intuitive to domain experts but challenging to quantify. We propose C5T5, a novel self-supervised pretraining method that enables transformers to make zero-shot select-and-replace edits, altering organic substances towards desired property values. C5T5 operates on IUPAC names -- a standardized molecular representation that intuitively encodes rich structural information for organic chemists but that has been largely ignored by the ML community. Our technique requires no edited molecule pairs to train and only a rough estimate of molecular properties, and it has the potential to model long-range dependencies and symmetric molecular structures more easily than graph-based methods. C5T5 also provides a powerful interface to domain experts: it grants users fine-grained control over the generative process by selecting and replacing IUPAC name fragments, which enables experts to leverage their intuitions about structure-activity relationships. We demonstrate C5T5s effectiveness on four physical properties relevant for drug discovery, showing that it learns successful and chemically intuitive strategies for altering molecules towards desired property values.
One of the new discoveries in quantum biology is the role of Environment Assisted Quantum Transport (ENAQT) in excitonic transport processes. In disordered quantum systems transport is most efficient when the environment just destroys quantum interferences responsible for localization, but the coupling does not drive the system to fully classical thermal diffusion yet. This poised realm between the pure quantum and the semi-classical domains has not been considered in other biological transport processes, such as charge transport through organic molecules. Binding in receptor-ligand complexes is assumed to be static as electrons are assumed to be not able to cross the ligand molecule. We show that ENAQT makes cross ligand transport possible and efficient between certain atoms opening the way for the reorganization of the charge distribution on the receptor when the ligand molecule docks. This new effect can potentially change our understanding how receptors work. We demonstrate room temperature ENAQT on the caffeine molecule.