Do you want to publish a course? Click here

Surface phonon-polaritons enhance thermal conduction in SiN nanomembranes

119   0   0.0 ( 0 )
 Added by Roman Anufriev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface phonon-polaritons can carry energy on the surface of dielectric films and thus are expected to contribute to heat conduction. However, the contribution of surface phonon-polaritons (SPhPs) to thermal transport has not been experimentally demonstrated yet. In this work, we experimentally measure the effective in-plane thermal conductivity of amorphous silicon nitride membrane and show that it can indeed be increased by SPhPs significantly when the membrane thickness scales down. In particular, by heating up a thin membrane (<100 nm) from 300 to 800 K, the thermal conductivity increases twice due to SPhPs contribution.

rate research

Read More

114 - Xiangfan Xu , Jie Chen , Baowen Li 2017
Recently, there have been increasing interests in phonon thermal transport in low dimensional materials, due to the crucial importance for dissipating and managing heat in micro and nano electronic devices. Significant progresses have been achieved for one-dimensional (1D) systems both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges in fabricating suspended samples suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges in phonon thermal transport measurements and provide comparison between existing experimental data. Special focus will be given to the effects of the size, dimensionality, anisotropy and mode contributions in the novel 2D systems including graphene, boron nitride, MoS2, black phosphorous, silicene etc.
Long-distance propagation of heat carriers is essential for efficient heat dissipation in microelectronics. However, in dielectric nanomaterials, the primary heat carriers - phonons - can propagate ballistically only for hundreds of nanometres, which limits their heat conduction efficiency. Theory predicts that surface phonon-polaritons (SPhPs) can overcome this limitation and conduct heat without dissipation for hundreds of micrometres. In this work, we experimentally demonstrate such long-distance heat transport by SPhPs. Using the 3$omega$ technique, we measure the in-plane thermal conductivity of SiN nanomembranes for different heater-sensor distances (100 and 200 $mu$m), membrane thicknesses (30 - 200 nm), and temperatures (300 - 400 K). We find that in contrast with thick membranes, thin nanomembranes support heat conduction by SPhPs, as evidenced by an increase in the thermal conductivity with temperature. Remarkably, the thermal conductivity measured 200 $mu$m away from the heater are consistently higher than that measured 100 $mu$m closer. This result suggests that heat conduction by SPhPs is quasi-ballistic over at least hundreds of micrometres. Thus, our findings show that SPhPs can enhance heat dissipation in polar nanomembranes and find applications in thermal management, near-field radiation, and polaritonics.
We investigated theoretically the phonon thermal conductivity of single layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-force field method. The three-phonon Umklapp processes were treated exactly using an accurate phonon dispersion and Brillouin zone, and accouting for all phonon relaxation channels allowed by the momentum and energy conservation laws. The uniqueness of graphene was reflected in the two-dimensional phonon density of states and restrictions on the phonon Umklapp scattering phase-space. The phonon scattering on defects and graphene edges has been also included in the model. The calculations were performed for the Gruneisen parameter, which was determined from the ab initio theory as a function of the phonon wave vector and polarization branch, and for a range of values from experiments. It was found that the near room-temperature thermal conductivity of single layer graphene, calculated with a realistic Gruneisen parameter, is in the range ~ 2000 - 5000 W/mK depending on the defect concentration and roughness of the edges. Owing to the long phonon mean free path the graphene edges produce strong effect on thermal conductivity even at room temperature. The obtained results are in good agreement with the recent measurements of the thermal conductivity of suspended graphene.
Nanoscale single-crystals possess modified phonon dispersions due to the truncation of the crystal. The introduction of surfaces alters the population of phonons relative to the bulk and introduces anisotropy arising from the breaking of translational symmetry. Such modifications exist throughout the Brillouin zone, even in structures with dimensions of several nanometers, posing a challenge to the characterization of vibrational properties and leading to uncertainty in predicting the thermal, optical, and electronic properties of nanomaterials. Synchrotron x-ray thermal diffuse scattering studies find that freestanding Si nanomembranes with thicknesses as large as 21 nm exhibit a higher scattering intensity per unit thickness than bulk silicon. In addition, the anisotropy arising from the finite thickness of these membranes produces particularly intense scattering along reciprocal-space directions normal to the membrane surface compared to corresponding in-plane directions. These results reveal the dimensions at which calculations of materials properties and device characteristics based on bulk phonon dispersions require consideration of the nanoscale size of the crystal.
Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction. We balance the interplay of the absorption, electrical and thermal conductivity of graphene via the device geometry. This novel approach yields remarkable device performance featuring room temperature high sensitivity (NEP of 82 pW-per-square-root-Hz) and fast rise time of 17 nanoseconds (setup-limited), among others, hence achieving a combination currently not present in the state-of-the-art graphene and commercial mid-infrared detectors. We also develop a multiphysics model that shows excellent quantitative agreement with our experimental results and reveals the different contributions to our photoresponse, thus paving the way for further improvement of these types of photodetectors even beyond mid-infrared range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا