Improving Resolution of Solid State NMR in Dense Molecular Hydrogen


Abstract in English

Recent advancements in radio-frequency resonator designs have led to the implementation of nuclear magnetic resonance in diamond anvil cells (DACs) at pressures well above 100 GPa. However, a relatively low resolution and the absence of decoupling sequences complicate the analysis of the results of solid state NMR in DACs. Here, we present the first application of homo-nuclear Lee-Goldburg (LG) decoupling at extreme conditions on high density molecular hydrogen. Lenz lens based two-dimensional resonator structures were found to generate a homogeneous B1 field across sample cavities as small as 12 picolitres, a prerequisite for optimal decoupling. At ideal LG conditions, the broad 1H resonance of molecular ortho-hydrogen was narrowed 1600-fold, resulting in line-widths of 3.1 ppm.

Download