Do you want to publish a course? Click here

RuleKit: A Comprehensive Suite for Rule-Based Learning

119   0   0.0 ( 0 )
 Added by Adam Gudy\\'s
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Rule-based models are often used for data analysis as they combine interpretability with predictive power. We present RuleKit, a versatile tool for rule learning. Based on a sequential covering induction algorithm, it is suitable for classification, regression, and survival problems. The presence of a user-guided induction facilitates verifying hypotheses concerning data dependencies which are expected or of interest. The powerful and flexible experimental environment allows straightforward investigation of different induction schemes. The analysis can be performed in batch mode, through RapidMiner plug-in, or R package. A documented Java API is also provided for convenience. The software is publicly available at GitHub under GNU AGPL-3.0 license.



rate research

Read More

Neural embedding-based machine learning models have shown promise for predicting novel links in biomedical knowledge graphs. Unfortunately, their practical utility is diminished by their lack of interpretability. Recently, the fully interpretable, rule-based algorithm AnyBURL yielded highly competitive results on many general-purpose link prediction benchmarks. However, its applicability to large-scale prediction tasks on complex biomedical knowledge bases is limited by long inference times and difficulties with aggregating predictions made by multiple rules. We improve upon AnyBURL by introducing the SAFRAN rule application framework which aggregates rules through a scalable clustering algorithm. SAFRAN yields new state-of-the-art results for fully interpretable link prediction on the established general-purpose benchmark FB15K-237 and the large-scale biomedical benchmark OpenBioLink. Furthermore, it exceeds the results of multiple established embedding-based algorithms on FB15K-237 and narrows the gap between rule-based and embedding-based algorithms on OpenBioLink. We also show that SAFRAN increases inference speeds by up to two orders of magnitude.
This paper introduces the Behaviour Suite for Reinforcement Learning, or bsuite for short. bsuite is a collection of carefully-designed experiments that investigate core capabilities of reinforcement learning (RL) agents with two objectives. First, to collect clear, informative and scalable problems that capture key issues in the design of general and efficient learning algorithms. Second, to study agent behaviour through their performance on these shared benchmarks. To complement this effort, we open source github.com/deepmind/bsuite, which automates evaluation and analysis of any agent on bsuite. This library facilitates reproducible and accessible research on the core issues in RL, and ultimately the design of superior learning algorithms. Our code is Python, and easy to use within existing projects. We include examples with OpenAI Baselines, Dopamine as well as new reference implementations. Going forward, we hope to incorporate more excellent experiments from the research community, and commit to a periodic review of bsuite from a committee of prominent researchers.
91 - Yanan Wang , Yong Ge , Li Li 2020
Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a meta-level model-based reinforcement learning approach for fast user adaptation. In our approach, we learn to infer each users preference with a user context variable that enables recommendation systems to better adapt to new users with few interactions. To improve adaptation efficiency, we learn to recover the user policy and reward from only a few interactions via an inverse reinforcement learning method to assist a meta-level recommendation agent. Moreover, we model the interaction relationship between the user model and recommendation agent from an information-theoretic perspective. Empirical results show the effectiveness of the proposed method when adapting to new users with only a single interaction sequence. We further provide a theoretical analysis of the recommendation performance bound.
The rapid increase in the percentage of chronic disease patients along with the recent pandemic pose immediate threats on healthcare expenditure and elevate causes of death. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, to improve services, access and scalability, while reducing costs. Reinforcement Learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for diverse applications and services. Thus, we conduct in this paper a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. This paper can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview for the I-health systems challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, Deep RL (DRL), and multi-agent RL models. After that, we provide a deep literature review for the applications of RL in I-health systems. In particular, three main areas have been tackled, i.e., edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and outline future research directions in driving the future success of RL in I-health systems, which opens the door for exploring some interesting and unsolved problems.
The recommender system is an important form of intelligent application, which assists users to alleviate from information redundancy. Among the metrics used to evaluate a recommender system, the metric of conversion has become more and more important. The majority of existing recommender systems perform poorly on the metric of conversion due to its extremely sparse feedback signal. To tackle this challenge, we propose a deep hierarchical reinforcement learning based recommendation framework, which consists of two components, i.e., high-level agent and low-level agent. The high-level agent catches long-term sparse conversion signals, and automatically sets abstract goals for low-level agent, while the low-level agent follows the abstract goals and interacts with real-time environment. To solve the inherent problem in hierarchical reinforcement learning, we propose a novel deep hierarchical reinforcement learning algorithm via multi-goals abstraction (HRL-MG). Our proposed algorithm contains three characteristics: 1) the high-level agent generates multiple goals to guide the low-level agent in different stages, which reduces the difficulty of approaching high-level goals; 2) different goals share the same state encoder parameters, which increases the update frequency of the high-level agent and thus accelerates the convergence of our proposed algorithm; 3) an appreciate benefit assignment function is designed to allocate rewards in each goal so as to coordinate different goals in a consistent direction. We evaluate our proposed algorithm based on a real-world e-commerce dataset and validate its effectiveness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا