In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as quickly as linear waves for $p>frac{1+sqrt{17}}{2}$, covering part of the sub-conformal case, while for the range $2<pleq frac{1+sqrt{17}}{2}$, the solution still decays with rate at least $t^{-frac{1}{3}}$. As a consequence, the solution scatters in energy space when $p>2.3542$. We also show that the solution is uniformly bounded when $p>frac{3}{2}$.