Do you want to publish a course? Click here

Candidates for non-pulsating stars located in the Cepheid instability strip in the Large Magellanic Cloud based on Stromgren photometry

107   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present candidates for non-pulsating stars lying in the classical Cepheid instability strip based on OGLE photometric maps combined with Stromgren photometry obtained with the 4.1-m SOAR telescope, and Gaia DR2 data in four fields in the Large Magellanic Cloud. We selected 19 candidates in total. After analysis of their light curves from OGLE surveys we found that all these stars appear to be photometrically stable at the level of a few mmag. Our results show that non-pulsating stars might constitute to about 21%-30% of the whole sample of giant stars located in the classical instability strip. Furthermore, we identified potential candidates for classical Cepheids with hot companions based on their Stromgren colours.



rate research

Read More

We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
We present a narrow-band imaging survey of the Large Magellanic Cloud, designed to isolate the C II $lambdalambda$7231, 7236 emission lines in objects as faint as $m_{lambda7400}sim18$. The work is motivated by the recent serendipitous discovery in the LMC of the first confirmed extragalactic [WC11] star, whose spectrum is dominated by C II emission, and the realization that the number of such objects is currently largely unconstrained. The survey, which imaged $sim$50$~$deg$^2$ using on-band and off-band filters, will significantly increase the total census of these rare stars. In addition, each new LMC [WC] star has a known luminosity, a quantity quite uncertain in the Galactic sample. Multiple known C II emitters were easily recovered, validating the survey design. We find 38 new C II emission candidates; spectroscopy of the complete sample will be needed to ascertain their nature. In a preliminary spectroscopic reconnaissance, we observed three candidates, finding C II emission in each. One is a new [WC11]. Another shows both the narrow C II emission lines characteristic of a [WC11], but also broad emission of C IV, O V, and He II characteristic of a much hotter [WC4] star; we speculate that this is a binary [WC]. The third object shows weak C II emission, but the spectrum is dominated by a dense thicket of strong absorption lines, including numerous O II transitions. We conclude it is likely an unusual hot, hydrogen-poor post-AGB star, possibly in transition from [WC] to white dwarf. Even lacking a complete spectroscopic program, we can infer that late [WC] stars do not dominate the central stars of LMC planetary nebulae, and that the detected C II emitters are largely of an old population.
64 - L. D. Matthews , 2016
We present the results of a search for HI 21-cm line emission from the circumstellar environments of four Galactic Cepheids (RS Pup, X Cyg, $zeta$ Gem, and T Mon) based on observations with the Karl G. Jansky Very Large Array. The observations were aimed at detecting gas associated with previous or ongoing mass loss. Near the long-period Cepheid T Mon, we report the detection of a partial shell-like structure whose properties appear consistent with originating from an earlier epoch of Cepheid mass loss. At the distance of T Mon, the nebula would have a mass (HI+He) of $sim0.5M_{odot}$, or $sim$6% of the stellar mass. Assuming that one-third of the nebular mass comprises swept-up interstellar gas, we estimate an implied mass-loss rate of ${dot M}sim (0.6-2)times10^{-5} M_{odot}$ yr$^{-1}$. No clear signatures of circumstellar emission were found toward $zeta$ Gem, RS Pup, or X Cyg, although in each case, line-of-sight confusion compromised portions of the spectral band. For the undetected stars, we derive model-dependent $3sigma$ upper limits on the mass-loss rates, averaged over their lifetimes on the instability strip, of $<(0.3-6)times10^{-6} M_{odot}$ yr$^{-1}$ and estimate the total amount of mass lost to be less than a few per cent of the stellar mass.
Context: Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: Attempt to, for the first time, spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud. Methods: ALMA was used to observe 2 OH/IR stars and 4 carbon stars in the LMC in the CO J= 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C-stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. Gas-to-dust ratios are derived that make the predicted velocities agree with the observed ones. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C-stars that have properties more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than derived from the dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear similar. This is in agreement with dynamical dust-driven wind models.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا