Do you want to publish a course? Click here

New Technologies for Discovery

59   0   0.0 ( 0 )
 Added by Marcel Demarteau
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the field of high energy physics to continue to have a bright future, priority within the field must be given to investments in the development of both evolutionary and transformational detector development that is coordinated across the national laboratories and with the university community, international partners and other disciplines. While the fundamental science questions addressed by high energy physics have never been more compelling, there is acute awareness of the challenging budgetary and technical constraints when scaling current technologies. Furthermore, many technologies are reaching their sensitivity limit and new approaches need to be developed to overcome the currently irreducible technological challenges. This situation is unfolding against a backdrop of declining funding for instrumentation, both at the national laboratories and in particular at the universities. This trend has to be reversed for the country to continue to play a leadership role in particle physics, especially in this most promising era of imminent new discoveries that could finally break the hugely successful, but limited, Standard Model of fundamental particle interactions. In this challenging environment it is essential that the community invest anew in instrumentation and optimize the use of the available resources to develop new innovative, cost-effective instrumentation, as this is our best hope to successfully accomplish the mission of high energy physics. This report summarizes the current status of instrumentation for high energy physics, the challenges and needs of future experiments and indicates high priority research areas.



rate research

Read More

We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single p0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV. They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS.
A calorimetric polarimeter based on inorganic LYSO scintillators is described. It has been designed for use in a storage ring to search for electric dipole moments (EDM) of charged particles such as the proton and deuteron. Its development and first use was on the Cooler Synchrotron (COSY) at the Forschungszentrum Julich with 0.97 GeV/c polarized deuterons, a particle and energy suitable for an EDM search. The search requires a polarimeter with high efficiency, large analyzing power, and stable operating characteristics. With typical beam momenta of about 1 GeV/c, the scattering of protons or deuterons from a carbon target into forward angles becomes a nearly optimal choice of an analyzing reaction. The polarimeter described here consists of 52 LYSO detector modules, arranged in 4 symmetric blocks (up, down, left, right) for energy determination behind plastic scintillators for particle identification via energy loss. The commissioning results of the current setup demonstrate that the polarimeter is ready to be employed in a first direct search for an EDM on the deuteron, which is planned at COSY in the next two years.
Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.
While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC (PETTL), which was supported by the Helmholtz Alliance Physics at the Terascale during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.
The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, $^{155}$Gd and $^{157}$Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8 MeV. The complex level schemes of $^{156}$Gd and $^{158}$Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd(n,${gamma}$) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا