We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ballistic. The latter implication is proved to hold for arbitrary transitive graphs. Moreover, for every fixed $k$, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion $d-1-O(1/d)$ as $dto infty$; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length $n$ is comparable to the $n$th power of their connective constant. Some of these results were previously obtained by Madras and Wu cite{MaWuSAW} for all but finitely many regular tessellations of the hyperbolic plane.