The Sloan Digital Sky Survey Reverberation Mapping Project: Improving Lag Detection with an Extended Multi-Year Baseline


Abstract in English

We investigate the effects of extended multi-year light curves (9-year photometry and 5-year spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z>~1.5, and compare with the results using 4-year photometry+spectroscopy presented in a companion paper. We demonstrate the benefits of the extended light curves in three cases: (1) lags that are too long to be detected by the shorter-duration data but can be detected with the extended data; (2) lags that are recovered by the extended light curves but missed in the shorter-duration data due to insufficient light curve quality; and (3) lags for different broad line species in the same object. These examples demonstrate the importance of long-term monitoring for reverberation mapping to detect lags for luminous quasars at high-redshift, and the expected performance of the final dataset from the Sloan Digital Sky Survey Reverberation Mapping project that will have 11-year photometric and 7-year spectroscopic baselines.

Download