Axion-like particles (ALPs) with lepton-flavor violating couplings can be probed in exotic muon and tau decays. The sensitivity of different experiments depends strongly on the ALP mass and its couplings to leptons and photons. For ALPs that can be resonantly produced, the sensitivity of three-body decays such as $muto 3e$ and $tauto 3mu$ exceeds by many orders of magnitude that of radiative decays like $muto egamma$ and $tautomugamma$. Searches for these two types of processes are therefore highly complementary. We discuss experimental constraints on ALPs with a single dominant lepton-flavor violating coupling. Allowing for one or more such couplings offers qualitatively new ways to explain the anomalies related to the magnetic moments of the muon and electron.
We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), $X$, at the $B$-factory experiment Belle II. We focus on production of the ALP in the tau decays $tau to X l$ with $l=e,mu$, followed by its decay via $Xto l^- l^+$. The ALP can be either promptly decaying or long-lived. We perform Monte-Carlo simulations, recasting a prompt search at Belle for lepton-flavor-violating $tau$ decays, and propose a displaced-vertex (DV) search. For both types of searches, we derive the Belle~II sensitivity reaches in both the product of branching fractions and the ALP coupling constants, as functions of the ALP mass and lifetime. The results show that the DV search exceeds the sensitivity reach of the prompt search to the relevant branching fractions by up to about a factor of 40 in the long decay length regime.
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the quark currents in the effective operators. This framework can be realized either in a renormalizable $U(1)$ setup or be due to new strongly interacting dynamics. The di-muon resonance searches at the LHC are becoming sensitive to this scenario since the $Z$ is relatively light, and could well be discovered in future searches by ATLAS and CMS.
We propose a method to reveal axions and axion-like particles based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented magnetic fields. The beam paths and the strength of the magnetic fields are set in such a way that all the contributions to the phase difference but the one due to axion-induced interactions are removed. The resulting phase difference is directly related to the presence of axions. Our results show that such a phase is in principle detectable with neutron interferometry, possibly proving the existence of axions and axion-like particles.
We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs through the renormalization group evolution of the soft SUSY breaking parameters between the string scale and the U(1)_A breaking scale. We derive general expressions for the evolution of these parameters in the presence of higher dimensional operators. Several sources for the flavor violation are identified: flavor-dependent contributions to the soft masses from the U(1)_A gaugino, scalar mass corrections proportional to the trace of U(1)_A charge, non-proportional A-terms from vertex corrections, and the U(1)_A D-term. Quantitative estimates for the decays mu -> e gamma and tau -> mu gamma are presented in supergravity models which accommodate the relic abundance of neutralino dark matter.
Martin Bauer
,Matthias Neubert
,Sophie Renner
.
(2019)
.
"Axion-like particles, lepton-flavor violation and a new explanation of $a_mu$ and $a_e$"
.
Martin Bauer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا