Identifiability of causal effects with multiple causes and a binary outcome


Abstract in English

Unobserved confounding presents a major threat to causal inference from observational studies. Recently, several authors suggest that this problem may be overcome in a shared confounding setting where multiple treatments are independent given a common latent confounder. It has been shown that under a linear Gaussian model for the treatments, the causal effect is not identifiable without parametric assumptions on the outcome model. In this paper, we show that the causal effect is indeed identifiable if we assume a general binary choice model for the outcome with a non-probit link. Our identification approach is based on the incongruence between Gaussianity of the treatments and latent confounder, and non-Gaussianity of a latent outcome variable. We further develop a two-step likelihood-based estimation procedure.

Download