X-ray Monitoring of the Magnetar CXOU J171405.7-381031 in SNR CTB 37B


Abstract in English

We present the results of our 8 year X-ray monitoring campaign on CXOU J171405.7-381031, the magnetar associated with the faint supernova remnant (SNR) CTB 37B. It is among the youngest by inferred spin-down age, and most energetic in spin-down power of magnetars, and may contribute, at least partially, to the GeV and TeV emission coincident with the SNR. We use a series of Chandra, XMM-Newton, and NuSTAR observations to characterize the timing and spectral properties of the magnetar. The spin-down rate of the pulsar almost doubled in <1 year and then decreased slowly to a more stable value. Its X-ray flux varied by approx, 50%, possibly correlated with the spin down rate. The 1-79 keV spectrum is well-characterized by an absorbed blackbody plus power-law model with an average temperature of kT=0.62+/-0.04 keV and photon index Gamma=0.92+/-0.16, or by a Comptonized blackbody with kT=0.55+/-0.04 keV and an additional hard power law with Gamma=0.70+/-0.20, In contrast with most magnetars, the pulsed signal is found to decrease with energy up to 6 keV, which is apparently caused by mixing with the hard spectral component that is pulse-phase shifted by approx. 0.43 cycles from the soft X-rays. We also analyze the spectrum of the nearby, diffuse nonthermal source XMMU J171410.8-381442, whose relation to the SNR is uncertain.

Download