Do you want to publish a course? Click here

X-ray Monitoring of the Magnetar CXOU J171405.7-381031 in SNR CTB 37B

90   0   0.0 ( 0 )
 Added by E. V. Gotthelf
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of our 8 year X-ray monitoring campaign on CXOU J171405.7-381031, the magnetar associated with the faint supernova remnant (SNR) CTB 37B. It is among the youngest by inferred spin-down age, and most energetic in spin-down power of magnetars, and may contribute, at least partially, to the GeV and TeV emission coincident with the SNR. We use a series of Chandra, XMM-Newton, and NuSTAR observations to characterize the timing and spectral properties of the magnetar. The spin-down rate of the pulsar almost doubled in <1 year and then decreased slowly to a more stable value. Its X-ray flux varied by approx, 50%, possibly correlated with the spin down rate. The 1-79 keV spectrum is well-characterized by an absorbed blackbody plus power-law model with an average temperature of kT=0.62+/-0.04 keV and photon index Gamma=0.92+/-0.16, or by a Comptonized blackbody with kT=0.55+/-0.04 keV and an additional hard power law with Gamma=0.70+/-0.20, In contrast with most magnetars, the pulsed signal is found to decrease with energy up to 6 keV, which is apparently caused by mixing with the hard spectral component that is pulse-phase shifted by approx. 0.43 cycles from the soft X-rays. We also analyze the spectrum of the nearby, diffuse nonthermal source XMMU J171410.8-381442, whose relation to the SNR is uncertain.

rate research

Read More

We observe the magnetar CXOU J171405.7-381031 with XMM-Newton and obtain the most reliable X-ray spectral parameters for this magnetar. After removing the flux from the surrounding supernova remnant CTB~37B, the radiation of CXOU J171405.7-381031 is best described by a two-component model, consisting of a blackbody and power law. We obtain a blackbody temperature of 0.58^{+0.03}_{-0.03} keV, photon index of 2.15^{+0.62}_{-0.68}, and unabsorbed 2-10 keV flux of 2.33^{+0.02}_{-0.02} x 10^{-12} erg cm^{-2} s^{-1}. These new parameters enable us to compare CXOU 171405.7-381031 with other magnetars, and it is found that the luminosity, temperature and the photon index of CXOU J171405.7-381031 are aligned with the known trend among the magnetar population with a slightly higher temperature, which could be caused by its young age. All the magnetars with a spin-down age of less than 1~kyr show time variation or bursts except for CXOU J171405.7-381031. We explore the time variability for ten observations in between 2006 and 2015, but there is no variation larger than sim 10%.
We report results of X-ray timing analyses for the low-field magnetar CXOU~J164710.2$-$455216 which exhibited multiple outbursts. We use data taken with NICER, NuSTAR, Chandra, and Neil-Gehrels-Swift telescopes between 2017 and 2018 when the source was in an active state. We perform semi-phase-coherent timing analyses to measure the spin parameters and a spin-inferred magnetic-field strength ($B_s$) of the magnetar. Using a semi-phase-coherent method, we infer the magnetic field strengths to be $3-4times 10^{13}rm G$ at the observation period ($sim$MJD 58000), and by comparing with previous frequency measurements (MJD 54000) a long-term average value of $B_s$ is estimated to be $approx4times 10^{13}rm G$. So this analysis may add CXOU~J164710.2$-$455216 to the ranks of low-field magnetars. The inferred characteristic age ($tau_c$) is 1--2 Myr which is smaller than the age of Westerlund~1, so the magnetars association with the star cluster is still secure. For the low dipole field and the large age, recent multiple outbursts observed from the source are hard to explain unless it has strong magnetic multipole components. We also find timing anomalies around outburst epochs, which suggests that there may be spin-down torque applied to the magnetar near the epochs as was proposed in magnetar models.
Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 $mu$m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_{H}) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.
We report on data obtained with the Chandra, XMM-Newton, Suzaku and Swift X-ray observatories, following the 2006 outburst of the Anomalous X-ray Pulsar CXO J164710.2-455216. We find no evidence for the very large glitch and rapid exponential decay as was reported previously for this source. We set a 3 sigma upper limit on any fractional frequency increase at the time of the outburst of Delta nu/nu < 1.5 x 10^{-5}. Our timing analysis, based on the longest time baseline yet, yields a spin-down rate for the pulsar that implies a surface dipolar magnetic field of ~9 x 10^{13} G, although this could be biased high by possible recovery from an undetected glitch. We also present an analysis of the source flux and spectral evolution, and find no evidence for long-term spectral relaxation post-outburst as was previously reported.
The middle-aged supernova remnant (SNR) CTB 37A is known to interact with several dense molecular clouds through the detection of shocked ${rm H_{2}}$ and OH 1720 MHz maser emission. In the present work, we use eight years of $textit Fermi$-LAT Pass 8 data, with an improved point-spread function and an increased acceptance, to perform detailed morphological and spectral studies of the $gamma$-ray emission toward CTB 37A from 200 MeV to 200 GeV. The best fit of the source extension is obtained for a very compact Gaussian model with a significance of 5.75$sigma$ and a 68% containment radius of $0.116^{circ}$ $pm$ $0.014^{circ}_{rm stat}$ $pm$ $0.017^{circ}_{rm sys}$ above 1 GeV, which is larger than the TeV emission size. The energy spectrum is modeled as a LogParabola, resulting in a spectral index $alpha$ = 1.92 $pm$ 0.19 at 1 GeV and a curvature $beta$ = 0.18 $pm$ 0.05, which becomes softer than the TeV spectrum above 10 GeV. The SNR properties, including a dynamical age of 6000 yr, are derived assuming the Sedov phase. From the multiwavelength modeling of emission toward the remnant, we conclude that the nonthermal radio and GeV emission is mostly due to the reacceleration of preexisting cosmic rays (CRs) by radiative shocks in the adjacent clouds. Furthermore, the observational data allow us to constrain the total kinetic energy transferred to the trapped CRs in the clouds. Based on these facts, we infer a composite nature for CTB 37A to explain the broadband spectrum and to elucidate the nature of the observed $gamma$-ray emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا