Do you want to publish a course? Click here

Multi-Frame Cross-Entropy Training for Convolutional Neural Networks in Speech Recognition

359   0   0.0 ( 0 )
 Added by Tom Sercu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce Multi-Frame Cross-Entropy training (MFCE) for convolutional neural network acoustic models. Recognizing that similar to RNNs, CNNs are in nature sequence models that take variable length inputs, we propose to take as input to the CNN a part of an utterance long enough that multiple labels are predicted at once, therefore getting cross-entropy loss signal from multiple adjacent frames. This increases the amount of label information drastically for small marginal computational cost. We show large WER improvements on hub5 and rt02 after training on the 2000-hour Switchboard benchmark.



rate research

Read More

Using mel-spectrograms over conventional MFCCs features, we assess the abilities of convolutional neural networks to accurately recognize and classify emotions from speech data. We introduce FSER, a speech emotion recognition model trained on four valid speech databases, achieving a high-classification accuracy of 95,05%, over 8 different emotion classes: anger, anxiety, calm, disgust, happiness, neutral, sadness, surprise. On each benchmark dataset, FSER outperforms the best models introduced so far, achieving a state-of-the-art performance. We show that FSER stays reliable, independently of the language, sex identity, and any other external factor. Additionally, we describe how FSER could potentially be used to improve mental and emotional health care and how our analysis and findings serve as guidelines and benchmarks for further works in the same direction.
Naturalistic speech recordings usually contain speech signals from multiple speakers. This phenomenon can degrade the performance of speech technologies due to the complexity of tracing and recognizing individual speakers. In this study, we investigate the detection of overlapping speech on segments as short as 25 ms using Convolutional Neural Networks. We evaluate the detection performance using different spectral features, and show that pyknogram features outperforms other commonly used speech features. The proposed system can predict overlapping speech with an accuracy of 84% and Fscore of 88% on a dataset of mixed speech generated based on the GRID dataset.
Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions.
In this work, we propose a novel and efficient minimum word error rate (MWER) training method for RNN-Transducer (RNN-T). Unlike previous work on this topic, which performs on-the-fly limited-size beam-search decoding and generates alignment scores for expected edit-distance computation, in our proposed method, we re-calculate and sum scores of all the possible alignments for each hypothesis in N-best lists. The hypothesis probability scores and back-propagated gradients are calculated efficiently using the forward-backward algorithm. Moreover, the proposed method allows us to decouple the decoding and training processes, and thus we can perform offline parallel-decoding and MWER training for each subset iteratively. Experimental results show that this proposed semi-on-the-fly method can speed up the on-the-fly method by 6 times and result in a similar WER improvement (3.6%) over a baseline RNN-T model. The proposed MWER training can also effectively reduce high-deletion errors (9.2% WER-reduction) introduced by RNN-T models when EOS is added for endpointer. Further improvement can be achieved if we use a proposed RNN-T rescoring method to re-rank hypotheses and use external RNN-LM to perform additional rescoring. The best system achieves a 5% relative improvement on an English test-set of real far-field recordings and a 11.6% WER reduction on music-domain utterances.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا