No Arabic abstract
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Existing deep Thermal InfraRed (TIR) trackers only use semantic features to describe the TIR object, which lack the sufficient discriminative capacity for handling distractors. This becomes worse when the feature extraction network is only trained on RGB images.To address this issue, we propose a multi-level similarity model under a Siamese framework for robust TIR object tracking. Specifically, we compute different pattern similarities on two convolutional layers using the proposed multi-level similarity network. One of them focuses on the global semantic similarity and the other computes the local structural similarity of the TIR object. These two similarities complement each other and hence enhance the discriminative capacity of the network for handling distractors. In addition, we design a simple while effective relative entropy based ensemble subnetwork to integrate the semantic and structural similarities. This subnetwork can adaptive learn the weights of the semantic and structural similarities at the training stage. To further enhance the discriminative capacity of the tracker, we construct the first large scale TIR video sequence dataset for training the proposed model. The proposed TIR dataset not only benefits the training for TIR tracking but also can be applied to numerous TIR vision tasks. Extensive experimental results on the VOT-TIR2015 and VOT-TIR2017 benchmarks demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
Video segmentation, i.e., partitioning video frames into multiple segments or objects, plays a critical role in a broad range of practical applications, e.g., visual effect assistance in movie, scene understanding in autonomous driving, and virtual background creation in video conferencing, to name a few. Recently, due to the renaissance of connectionism in computer vision, there has been an influx of numerous deep learning based approaches that have been dedicated to video segmentation and delivered compelling performance. In this survey, we comprehensively review two basic lines of research in this area, i.e., generic object segmentation (of unknown categories) in videos and video semantic segmentation, by introducing their respective task settings, background concepts, perceived need, development history, and main challenges. We also provide a detailed overview of representative literature on both methods and datasets. Additionally, we present quantitative performance comparisons of the reviewed methods on benchmark datasets. At last, we point out a set of unsolved open issues in this field, and suggest possible opportunities for further research.
We present a survey on maritime object detection and tracking approaches, which are essential for the development of a navigational system for autonomous ships. The electro-optical (EO) sensor considered here is a video camera that operates in the visible or the infrared spectra, which conventionally complement radar and sonar and have demonstrated effectiveness for situational awareness at sea has demonstrated its effectiveness over the last few years. This paper provides a comprehensive overview of various approaches of video processing for object detection and tracking in the maritime environment. We follow an approach-based taxonomy wherein the advantages and limitations of each approach are compared. The object detection system consists of the following modules: horizon detection, static background subtraction and foreground segmentation. Each of these has been studied extensively in maritime situations and has been shown to be challenging due to the presence of background motion especially due to waves and wakes. The main processes involved in object tracking include video frame registration, dynamic background subtraction, and the object tracking algorithm itself. The challenges for robust tracking arise due to camera motion, dynamic background and low contrast of tracked object, possibly due to environmental degradation. The survey also discusses multisensor approaches and commercial maritime systems that use EO sensors. The survey also highlights methods from computer vision research which hold promise to perform well in maritime EO data processing. Performance of several maritime and computer vision techniques is evaluated on newly proposed Singapore Maritime Dataset.
Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multi-object tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi-object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multi-modality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report state-of-the-art performance. Code and models are available at https://github.com/ZwwWayne/mmMOT.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.