Do you want to publish a course? Click here

An X-ray + Radio Search for Massive Black Holes in Blue Compact Dwarf Galaxies

78   0   0.0 ( 0 )
 Added by Colin Latimer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nearby blue compact dwarf (BCD) galaxies are arguably our best local analogues of galaxies in the earlier Universe that may host relics of black hole (BH) seeds. Here we present high-resolution Chandra X-ray Observatory and Karl G. Jansky Very Large Array (VLA) observations of five nearby BCDs with stellar masses of less than the Small Magellanic Cloud ($M_star sim 10^{7} - 10^{8.4}$ $M_odot$). We search for signatures of accreting massive BHs at X-ray and radio wavelengths, which are more sensitive to lower BH accretion rates than optical searches. We detect a total of 10 hard X-ray sources and 10 compact radio sources at luminosities consistent with star-formation-related emission. We find one case of a spatially-coincident X-ray and radio source within the astrometric uncertainties. If the X-ray and radio emission are indeed coming from the same source, the origin of the radiation is plausibly from an active massive BH with log $(M_{rm BH}/M_{odot}) sim 4.8 pm 1.1$. However, given that the X-ray and radio emission are also coincident with a young star cluster complex, we consider the combination of an X-ray binary and a supernova remnant (or HII region) a viable alternative explanation. Overall, we do not find compelling evidence for active massive BHs in our target BCDs, which on average have stellar masses more than an order of magnitude lower than previous samples of dwarf galaxies found to host massive BHs. Our results suggest that moderately accreting massive BHs in BCDs are not so common as to permit unambiguous detection in a small sample.



rate research

Read More

302 - Philip Kaaret , Joseph Schmitt , 2011
We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.
The population of massive black holes (MBHs) in dwarf galaxies is elusive, but fundamentally important to understand the coevolution of black holes with their hosts and the formation of the first collapsed objects in the Universe. While some progress was made in determining the X-ray detected fraction of MBHs in dwarfs, with typical values ranging from $0%$ to $6%$, their overall active fraction, ${cal A}$, is still largely unconstrained. Here, we develop a theoretical model to predict the multiwavelength active fraction of MBHs in dwarf galaxies starting from first principles and based on the physical properties of the host, namely, its stellar mass and angular momentum content. We find multiwavelength active fractions for MBHs, accreting at typically low rates, ranging from $5%$ to $22%$, and increasing with the stellar mass of the host as ${cal A} sim(log_{10}M_{star})^{4.5}$. If dwarfs are characterized by low-metallicity environments, the active fraction may reach $sim 30%$ for the most massive hosts. For galaxies with stellar mass in the range $10^7<M_{star} [M_{odot}]<10^{10}$, our predictions are in agreement with occupation fractions derived from simulations and semi-analytical models. Additionally, we provide a fitting formula to predict the probability of finding an active MBH in a dwarf galaxy from observationally derived data. This model will be instrumental to guide future observational efforts to find MBHs in dwarfs. The James Webb Space Telescope, in particular, will play a crucial role in detecting MBHs in dwarfs, possibly uncovering active fractions $sim 3$ times larger than current X-ray surveys.
We investigate the possible presence of active galactic nuclei (AGN) in dwarf galaxies and other nearby galaxies to identify candidates for follow-up confirmation and dynamical mass measurements. We use the Wide-field Infrared Survey Explorer (WISE) All-Sky Release Source Catalog and examine the infrared colours of a sample of dwarf galaxies and other nearby galaxies in order to identify both unobscured and obscured candidate AGN by applying the infrared colour diagnostic. Stellar masses of galaxies are obtained using a combination of three independent methods. Black hole masses are estimated using the bolometric luminosity of the AGN candidates and computed for three cases of the bolometric-to-Eddington luminosity ratio. We identify 303 candidate AGN, of which 276 were subsequently found to have been independently identified as AGN via other methods. The remaining 9% require follow-up observations for confirmation. The activity is detected in galaxies with stellar masses from ~ 10^6 to 10^9 solar masses; assuming the candidates are AGN, the black hole masses are estimated to be ~ 10^3 - 10^6 solar masses, adopting L_bol = 0.1 L_Edd. The black hole masses probed are several orders of magnitude smaller than previously reported for centrally located massive black holes. We examine the stellar mass versus black hole mass relationship in this low galaxy mass regime. We find that it is consistent with the existing relation extending linearly (in log-log space) into the lower mass regime. These findings suggest that CMBH are present in low-mass galaxies and in the Local Universe, and provide new impetus for follow-up dynamical studies of quiescent black holes in local dwarf galaxies.
CONTEXT: The dynamical mass-to-light (M/L) ratios of massive ultra-compact dwarf galaxies (UCDs) are about 50% higher than predicted by stellar population models. AIMS: Here we investigate the possibility that these elevated M/L ratios are caused by a central black hole (BH), heating up the internal motion of stars. We focus on a sample of ~50 extragalactic UCDs for which velocity dispersions and structural parameters have been measured. METHODS: Using up-to-date distance moduli and a consistent treatment of aperture and seeing effects, we calculate the ratio Psi=(M/L)_{dyn}/(M/L)_{pop} between the dynamical and the stellar population M/L of UCDs. For all UCDs with Psi>1 we estimate the mass of a hypothetical central BH needed to reproduce the observed integrated velocity dispersion. RESULTS: Massive UCDs (M>10^7 M_*) have an average Psi = 1.7 +-0.2, implying notable amounts of dark mass in them. We find that, on average, central BH masses of 10-15% of the UCD mass can explain these elevated dynamical M/L ratios. The implied BH masses in UCDs range from several 10^5 M_* to several 10^7 M_*. In the M_BH-Luminosity plane, UCDs are offset by about two orders of magnitude in luminosity from the relation derived for galaxies. Our findings can be interpreted such that massive UCDs originate from progenitor galaxies with masses around 10^9 M_*, and that those progenitors have SMBH occupation fractions of 60-100%. The suggested UCD progenitor masses agree with predictions from the tidal stripping scenario. Lower-mass UCDs (M<10^7 M_*) exhibit a bimodal distribution in Psi, suggestive of a coexistence of massive globular clusters and tidally stripped galaxies in this mass regime. CONCLUSIONS: Central BHs as relict tracers of tidally stripped progenitor galaxies are a plausible explanation for the elevated dynamical M/L ratios of UCDs.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا