Do you want to publish a course? Click here

The Complete Evolution of a Neutron-Star Binary through a Common Envelope Phase Using 1D Hydrodynamic Simulations

70   0   0.0 ( 0 )
 Added by Tassos Fragos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over forty years of research suggests that the common envelope phase, in which an evolved star engulfs its companion upon expansion, is the critical evolutionary stage forming short-period, compact-object binary systems, such as coalescing double compact objects, X-ray binaries, and cataclysmic variables. In this work, we adapt the one-dimensional hydrodynamic stellar evolution code, MESA, to model the inspiral of a 1.4M$_{odot}$ neutron star (NS) inside the envelope of a 12$M_{odot}$ red supergiant star. We self-consistently calculate the drag force experienced by the NS as well as the back-reaction onto the expanding envelope as the NS spirals in. Nearly all of the hydrogen envelope escapes, expanding to large radii ($sim$10$^2$ AU) where it forms an optically thick envelope with temperatures low enough that dust formation occurs. We simulate the NS orbit until only 0.8M$_{odot}$ of the hydrogen envelope remains around the giant stars core. Our results suggest that the inspiral will continue until another $approx$0.3M$_{odot}$ are removed, at which point the remaining envelope will retract. Upon separation, a phase of dynamically stable mass transfer onto the NS accretor is likely to ensue, which may be observable as an ultraluminous X-ray source. The resulting binary, comprised of a detached 2.6M$_{odot}$ helium-star and a NS with a separation of 3.3-5.7R$_{odot}$, is expected to evolve into a merging double neutron-star, analogous to those recently detected by LIGO/Virgo. For our chosen combination of binary parameters, our estimated final separation (including the phase of stable mass transfer) suggests a very high $alpha_{rm CE}$-equivalent efficiency of $approx$5.



rate research

Read More

We present an analysis of the binary central star of the planetary nebula NGC 2346 based on archival data from the International Ultraviolet Explorer (IUE), and new low- and high-resolution optical spectra (3700 - 7300{AA}). By including in the spectral analysis the contribution of both stellar and nebular continuum, we reconciled long-time discrepant UV and optical diagnostics and derive $E(B-V)=0.18pm0.01$. We re-classified the companion star as A5IV by analyzing the wings of the Balmer absorption lines in the high-resolution ($R=67,000$) optical spectra. Using the distance to the nebula of 1400 pc from Gaia DR2, we constructed a photoionization model based on abundances and line intensities derived from the low-resolution optical spectra, and obtained a temperature of $T_{rm eff}=130,000$K and a luminosity $L=170$L$_odot$ for the ionizing star, consistent with the UV continuum. This analysis allows us to better characterize the binary systems evolution. We conclude that the progenitor star of NGC 2346 has experienced a common envelope phase, in which the companion star has accreted mass and evolved off the main-sequence.
119 - Noam Soker 2021
I study a triple star common envelope evolution (CEE) of a tight binary system that is spiraling-in inside a giant envelope and launches jets that spin-up the envelope with an angular momentum component perpendicular to the orbital angular momentum of the triple star system. This occurs when the orbital plane of the tight binary system and that of the triple star system are inclined to each other, so the jets are not along the triple star orbital angular momentum. The merger of the tight binary stars also tilts the envelope spin direction. If the giant is a red supergiant (RSG) star that later collapses to form a black hole (BH) the BH final spin is misaligned with the orbital angular momentum. Therefore, CEE of neutron star (NS) or BH tight binaries with each other or with one main sequence star (MSS) inside the envelope of an RSG, where the jets power a common envelope jets supernova (CEJSN) event, might end with a NS/BH - NS/BH close binary system with spin-orbit misalignment. Such binaries can later merge to be gravitational waves sources. I list five triple star scenarios that might lead to spin-orbit misalignments of NS/BH - NS/BH binary systems, two of which predict that the two spins be parallel to each other. In the case of a tight binary system of two MSSs inside an asymptotic giant branch star the outcome is an additional non-spherical component to the mass loss with the formation of a messy planetary nebula.
The coalescence of two neutron stars was recently observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12$M_odot$ red supergiant and a 1.4$M_odot$ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and a final orbital separation of $approx 1.1$-$2.8 R_odot$, leading to a binary neutron star that will merge within 0.01-1 Gyr. We find an $alpha_{rm CE}$-equivalent efficiency of $approx 0.1$-$0.4$ for the models we study, but this may be specific for these extended progenitors. We fully resolve the core of the star to $lesssim 0.005 R_odot$ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources.
Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin up the primary and circularize the orbit before the binary reaches Roche-lobe overflow (RLO). We test this assumption by coupling numerical models of the post main sequence stellar evolution of massive-stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai (2020) $-$ a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10~M_odot$ ($15~M_odot$) primary star interacting with a $1.4~M_odot$ companion, systems with pericentre distances within 3 AU (6 AU) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common envelope eccentricity on the resulting compact binary merit further study.
The hydrodynamic evolution of the common envelope phase of a low mass binary composed of a 1.05 Msun red giant and a 0.6 Msun companion has been followed for five orbits of the system using a high resolution method in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giants extended atmosphere causes about 25% of the common envelope to be ejected from the system, with mass continuing to be lost at the end of the simulation at a rate ~ 2 Msun/yr. In the process the resulting loss of angular momentum and energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution, and the commonly-used Bondi-Hoyle-Lyttleton prescription for estimating the accretion rate onto the companion significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating about the red giant companion. On larger scales, 90% of the outflow is contained within 30 degrees of the orbital plane, and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released by the inspiral of the cores, only about 25% goes toward ejection of the envelope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا