Do you want to publish a course? Click here

Does the boson peak survive in an ultrathin oxide glass?

48   0   0.0 ( 0 )
 Added by David Cortie Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bulk glasses exhibit extra vibrational modes at low energies, known as the boson peak. The microscopic dynamics in nanoscale alumina impact the performance of qubits and other superconducting devices, however the existence of the boson peak in these glasses has not been previously measured. Here we report neutron spectroscopy on Al/Al$_2$O$_{3-x}$ nanoparticles consisting of spherical metallic cores from 20 to 1000 nm surrounded by a 3.5 nm thick alumina glass. An intense low-energy peak is observed at $omega_{BP}$ = 2.8 $pm$ 0.6 meV for highly oxidised particles, concurrent with an excess in the density of states. The intensity of the peak scales inversely with particle size and oxide fraction indicating a surface origin, and is red-shifted by 3 meV with respect to the van-Hove singularity of $gamma$-phase Al$_2$O$_{3-x}$ nanocrystals. Molecular dynamics simulations of $alpha$-Al$_2$O$_{3-x}$, $gamma$-Al$_2$O$_{3-x}$ and a-Al$_2$O$_{3-x}$ show that the observed boson peak is a signature of the ultrathin glass surface, and the frequency is softened compared to that of the hypothetical bulk glass.



rate research

Read More

The local coordination numbers of As$_2$Se$_3$ glass were determined by a combination of anomalous x-ray scattering experiments, reverse Monte Carlo calculations, and {it ab initio} molecular dynamics simulations. The well-known `8-$N$ bonding rule proposed by Mott breaks down around the As atoms, exceeding the rule by 7--26%. An experimental prediction based on mean-field theory agrees with the present experimental and theoretical results. The fourfold coordinated As atoms likely form As-As wrong bond chains rather than ethan-like configurations, which is identified as the origin for the breakdown of the `8-$N$ bonding rule.
Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here we determine the effect of the cubic-tetragonal distortion of $text{SrTiO}_3$ on the electronic properties of thin films of $text{SrIrO}_3$, a topological crystalline metal hosting a delicate interplay between spin-orbit coupling and electronic correlations. We demonstrate that below the transition temperature at 105 K, $text{SrIrO}_3$ orthorhombic domains couple directly to tetragonal domains in $text{SrTiO}_3$. This forces the in-phase rotational axis to lie in-plane and creates a binary domain structure in the $text{SrIrO}_3$ film. The close proximity to the metal-insulator transition in ultrathin $text{SrIrO}_3$ causes the individual domains to have strongly anisotropic transport properties, driven by a reduction of bandwidth along the in-phase axis. The strong structure-property relationships in perovskites make these compounds particularly suitable for static and dynamic coupling at interfaces, providing a promising route towards realizing novel functionalities in oxide heterostructures.
141 - B. Cui , R. Milkus , A. Zaccone 2017
We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting Generalized Langevin Equation. The resulting framework requires the knowledge of the vibrational density of states (DOS) as input, that we take from numerical evaluation of a marginally-stable harmonic disordered lattice, featuring a strong boson peak (excess of soft modes over Debye $simomega_{p}^{2}$ law). The dielectric function calculated based on this ansatz is compared with experimental data for the paradigmatic case of glycerol at $Tlesssim T_{g}$. Good agreement is found for both the reactive (real part) of the response and for the $alpha$-relaxation peak in the imaginary part, with a significant improvement over earlier theoretical approaches, especially in the reactive modulus. On the low-frequency side of the $alpha$-peak, the fitting supports the presence of $sim omega_{p}^{4}$ modes at vanishing eigenfrequency as recently shown in [Phys. Rev. Lett. 117, 035501 (2016)]. $alpha$-wing asymmetry and stretched-exponential behaviour are recovered by our framework, which shows that these features are, to a large extent, caused by the soft boson-peak modes in the DOS.
The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs that are induced by changes in the FE polarization direction. Here, we show that in practice the junction current ratios between the two polarization states can be further enhanced by the electrostatic modification in the correlated electron oxide electrodes, and that FTJs with nanometer thin layers can effectively produce a considerably large electroresistance ratio at room temperature. To understand these surprising results, we employed an additional control parameter, which is related to the crossing of electronic and magnetic phase boundaries of the correlated electron oxide. The FE-induced phase modulation at the heterointerface ultimately results in an enhanced electroresistance effect. Our study highlights that the strong coupling between degrees of freedom across heterointerfaces could yield versatile and novel applications in oxide electronics.
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi-arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e. they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi-arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا