No Arabic abstract
In this paper we probe the hot, post-shock gas component of quasar-driven winds through the thermal Sunyaev-Zeldovich (tSZ) effect. Combining datasets from the Atacama Cosmology Telescope, the $textit{Herschel}$ Space Observatory, and the Very Large Array, we measure average spectral energy distributions (SEDs) of 109,829 optically-selected, radio quiet quasars from 1.4~GHz to 3000~GHz in six redshift bins between $0.3<z<3.5$. We model the emission components in the radio and far-infrared, plus a spectral distortion from the tSZ effect. At $z>1.91$, we measure the tSZ effect at $3.8sigma$ significance with an amplitude corresponding to a total thermal energy of $3.1times10^{60}$ ergs. If this energy is due to virialized gas, then our measurement implies quasar host halo masses are $sim6times10^{12}~h^{-1}$M$_odot$. Alternatively, if the host dark matter halo masses are $sim2times10^{12}~h^{-1}$M$_odot$ as some measurements suggest, then we measure a $>$90 per cent excess in the thermal energy over that expected due to virialization. If the measured SZ effect is primarily due to hot bubbles from quasar-driven winds, we find that $(5^{+1.2}_{-1.3}$) per cent of the quasar bolometric luminosity couples to the intergalactic medium over a fiducial quasar lifetime of 100 Myr. An additional source of tSZ may be correlated structure, and further work is required to separate the contributions. At $zleq1.91$, we detect emission at 95 and 148~GHz that is in excess of thermal dust and optically thin synchrotron emission. We investigate potential sources of this excess emission, finding that CO line emission and an additional optically thick synchrotron component are the most viable candidates.
Using a radio-quiet subsample of the Sloan Digital Sky Survey spectroscopic quasar catalogue, spanning redshifts 0.5-3.5, we derive the mean millimetre and far-infrared quasar spectral energy distributions (SEDs) via a stacking analysis of Atacama Cosmology Telescope and Herschel-Spectral and Photometric Imaging REceiver data. We constrain the form of the far-infrared emission and find 3$sigma$-4$sigma$ evidence for the thermal Sunyaev-Zeldovich (SZ) effect, characteristic of a hot ionized gas component with thermal energy $(6.2 pm 1.7)times 10^{60}$ erg. This amount of thermal energy is greater than expected assuming only hot gas in virial equilibrium with the dark matter haloes of $(1-5)times 10^{12}h^{-1}$M$_odot$ that these systems are expected to occupy, though the highest quasar mass estimates found in the literature could explain a large fraction of this energy. Our measurements are consistent with quasars depositing up to $(14.5 pm 3.3)~tau_8^{-1}$ per cent of their radiative energy into their circumgalactic environment if their typical period of quasar activity is $tau_8times~10^8$ yr. For high quasar host masses, $sim10^{13}h^{-1}$M$_odot$, this percentage will be reduced. Furthermore, the uncertainty on this percentage is only statistical and additional systematic uncertainties enter at the 40 per cent level. The SEDs are dust dominated in all bands and we consider various models for dust emission. While sufficiently complex dust models can obviate the SZ effect, the SZ interpretation remains favoured at the 3$sigma$-4$sigma$ level for most models.
The nature and energetics of feedback from thermal winds in quasars can be constrained via observations of the Sunyaev-Zeldovich Effect (SZE) induced by the bubble of thermal plasma blown into the intergalactic medium by the quasar wind. In this letter, we present evidence that we have made the first detection of such a bubble, associated with the hyperluminous quasar HE0515-4414. The SZE detection is corroborated by the presence of extended emission line gas at the same position angle as the wind. Our detection appears on only one side of the quasar, consistent with the SZE signal arising from a combination of thermal and kinetic contributions. Estimates of the energy in the wind allow us to constrain the wind luminosity to the lower end of theoretical predictions, ~0.01% of the bolometric luminosity of the quasar. However, the age we estimate for the bubble, ~0.1 Gyr, and the long cooling time, ~0.6 Gyr, means that such bubbles may be effective at providing feedback between bursts of quasar activity.
The Sunyaev-Zeldovich Effect (SZE) can be used to detect the hot bubbles in the intergalactic medium blown by energetic winds from AGN and starbursts. By directly constraining the kinetic luminosity, age and total energy of the outflow, it offers the promise of greatly increasing our understanding of the effects of wind feedback on galaxy evolution. Detecting the SZE in these winds is very challenging, at the edge of what is possible using existing facilities. The scale of the signal (10-100 kpc) is, however, well matched to interferometers operating at mm wavelengths for objects at z~1. Thus this could become a major science area for the ngVLA, especially if the design of the core is optimized for sensitivity on angular scales of >1 arcsec in the 90 GHz band.
We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zeldovich (SZ) effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from FIRST and NVSS, we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and flat spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reflecting the prevalence of steep spectrum sources at high flux densities and the presence of flat spectrum sources at lower flux densities. The thermal SZ effect associated with the halos that host the AGN is detected at the 5$sigma$ level through its spectral signature. When we compare the SZ effect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ effect in some of the lowest mass halos (average $M_{200}approx10^{13}$M$_{odot}h_{70}^{-1}$) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel observations, we show that the SZ detection is not significantly contaminated by dust. We show that 5 mJy$<S_{1.4}<$200 mJy radio sources contribute $ell(ell+1)C_{ell}/(2pi)=0.37pm0.03mu$K$^2$ to the angular power spectrum at $ell=3000$ at 148 GHz, after accounting for the SZ effect associated with their host halos.
X-ray emission and the thermal Sunyaev-Zeldovich distortion to the Cosmic Microwave Background are two important handles on the gas content of the Universe. The cross-correlation between these effects eliminates noise bias and reduces observational systematic effects. Using analytic models for the cluster profile, we develop a halo model formalism to study this cross-correlation and apply it to forecast the signal-to-noise of upcoming measurements from eROSITA and the Simons Observatory. In the soft X-ray band (0.5--2 keV), we forecast a signal-to-noise of 174 for the cross-power spectrum. Over a wide range of the scales, the X-rays will be signal-dominated, and so sample variance is important. In particular, non-Gaussian (4-point) contributions to the errors highlight the utility of masking massive clusters. Masking clusters down to $10^{14} M_odot$ increases the signal-to-noise of the cross-spectrum to 201. We perform a Fisher Analysis on the fitting coefficients of the Battaglia et al. gas profiles and on cosmological parameters. We find that the cross spectrum is most sensitive to the overall scale of the profiles of pressure and electron density, as well as cosmological parameters $sigma_8$ and $H_0$, but that the large number of parameters form a degenerate set, which makes extracting the information more challenging. Our modeling framework is flexible, and in the future, we can easily extend it to forecast the spatial cross-correlations of surveys of X-ray lines available to high-energy-resolution microcalorimetry, to studies of the Warm-Hot Intergalactic Medium, and other effects.