Do you want to publish a course? Click here

Electrical switching in a magnetically intercalated transition metal dichalcogenide

137   0   0.0 ( 0 )
 Added by Nityan Nair
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent advances in tuning the correlated behavior of graphene and transition-metal dichalcogenides (TMDs) have opened a new frontier in the study of many-body physics in two dimensions and promise exciting possibilities for new quantum technologies. An emerging field where these materials have yet to make a deep impact is the study of antiferromagnetic (AFM) spintronics - a relatively new research direction that promises technologies that are insensitive to external magnetic fields, fast switching times, and reduced crosstalk. In this study we present measurements on the intercalated TMD Fe1/3NbS2 which exhibits antiferromagnetic ordering below 42K. We find that current densities on the order of 10^4 A/cm^2 can reorient the magnetic order, the response of which can be detected in the samples resistance. This demonstrates that Fe1/3NbS2 can be used as an antiferromagnetic switch with electronic write-in and read-out. This switching is found to be stable over time and remarkably robust to external magnetic fields. Fe1/3NbS2 is a rare example of an AFM system that exhibits fully electronic switching behavior in single crystal form, making it appealing for low-power, low-temperature memory storage applications. Moreover, Fe1/3NbS2 is part of a much larger family of magnetically intercalated TMDs, some of which may exhibit the switching behavior at higher temperatures and form a platform from which to build tunable AFM spintronic devices.



rate research

Read More

The interplay of symmetry and quenched disorder leads to some of the most fundamentally interesting and technologically important properties of correlated materials. It also poses the most vexing of theoretical challenges. Nowhere is this more apparent than in the study of spin glasses. A spin glass is characterized by an ergodic landscape of states - an innumerable number of possibilities that are only weakly distinguished energetically, if at all. We show in the material Fe$_x$NbS$_2$, this landscape of states can be biased by coexisitng antiferromagnetic order. This process leads to a phenomenon of broad technological importance: giant, tunable exchange bias. We observe exchange biases that exceed those of conventional materials by more than two orders of magnitude. This work illustrates a novel route to giant exchange bias by leveraging the interplay of frustration and disorder in exotic materials.
Small-twist-angle transition metal dichalcogenide (TMD) heterobilayers develop isolated flat moire bands that are approximately described by triangular lattice generalized Hubbard models [PhysRevLett.121.026402]. In this article we explore the metallic and insulating states that appear under different control conditions at a density of one-electron per moire period, and the transitions between them. By combining fully self-consistent Hartree-Fock theory calculations with strong-coupling expansions around the atomic limit, we identify four different magnetic states and one nonmagnetic state near the model phase diagrams metal-insulator phase-transition line. Ferromagnetic insulating states, stabilized by non-local direct exchange interactions, are surprisingly prominent.
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides.
We investigate proximity-induced superconductivity in monolayers of transition metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional emph{s}-wave superconductor with singlet Copper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.
Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed momentum-resolved electron energy-loss spectroscopy (M-EELS), we study electronic collective modes in the transition metal dichalcogenide semimetal, 1T-TiSe$_2$. Near the phase transition temperature, T$_c$ = 190 K, the energy of the electronic mode falls to zero at nonzero momentum, indicating dynamical slowing down of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا